|
|
Microstructures and properties of carbon fiber powders modified iron-based powder metallurgy materials |
WANG Jiayu1, FANG Huachan1, ZHANG Qianqian1, DUAN Zhiying1, FANG Zhou1, ZHANG Zhuo2, CHEN Zhuo1, XU Yongxiang3, REN Zian1 |
1. State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China; 2. Advance Research Center, Central South University, Changsha 410083, China; 3. CRRC Qishuyan Institute Co., Ltd., Changzhou 213011, China |
|
|
Abstract MCsf/Fe and Cfp/Fe powder metallurgy materials were prepared by pressing-vacuum sintering using reduced Fe powder as the matrix, micron short carbon fibers (MCsf) with a length of about 20 μm and carbon fiber particles (Cfp) with a particle size of 1-4 μm as the dispersoid, respectively. Natural graphite (NG) with an average particle size of 10 μm as the raw material was used to prepare NG/Fe powder materials for comparison. The effects of micronshort carbon fibers and carbon fiber particles on the microstructure, physical properties, mechanical properties and dimensional changes were investigated. The results show that the activity of carbon fiber particles is much higher than that of graphite and degummed short carbon fibers (DCsf), and the maximum mass loss rate at 800 ℃ in air atmosphere is 3.75 times that of graphite and 16.6 times that of degummed short carbon fibers. Compare with NG/Fe and MCsf/Fe powder metallurgy materials, the dimensional stability of Cfp/Fe powder metallurgy materials during sintering is greatly improved, with the maximum radial expansion and shrinkage rates of 0.39% and 0.14%, respectively; the strength and toughness are the highest, with the density, flexural strength, shear strength and tensile strength of 6.91 g/cm3, 736.9 MPa, 205.7 MPa and 334.8 MPa, respectively. The elongation reach 10.5%, and the fracture mode of the materials change from a brittle along-crystal fracture to a completely severe nest fracture.
|
Received: 21 April 2023
Published: 21 September 2023
|
|
|
|
|
[1] 黄伯云, 韦伟峰, 李松林, 等. 现代粉末冶金材料与技术进展[J]. 中国有色金属学报, 2019, 29(9): 1917-1933. HUANG Boyun, WEI Weifeng, LI Songlin, et al.Advances in modern powder metallurgical materials and technologies[J]. The Chinese Journal of Nonferrous Metals, 2019, 29(9): 1917-1933. [2] 徐峰, 冯小明, 王永善. 铁基粉末冶金摩擦材料的研制[J]. 热加工工艺, 2017, 46(14): 110-111, 115. XU Feng, FENG Xiaoming, WANG Yongshan.Research on iron based powder metalurgy frictional materals[J]. Hot Working Technology, 2017, 46(14): 110-111, 115. [3] CHEN H, LUO P, YANG Y, et al.Effect of Mn addition and its nitridation on microstructure and properties of sintered Fe-1Mn-0.5C low-alloy steel[J]. Journal of Materials Engineering and Performance, 2017, 26(9): 4481-4490. [4] 杨廷志. 现代粉末冶金材料与技术进展[J]. 中国金属通报, 2019(12): 10-11. YANG Tingzhi.Advances in modern powder metallurgical materials and technologies[J]. China Metal Bulletin, 2019(12): 10-11. [5] SHUI Y, FENG K, ZHANG Y, et al.Influence of Mn on the iron-based friction material directly prepared by in situ carbothermic reaction from vanadium-bearing titanomagnetite concentrates[J]. RSC Advances, 2018, 8(64): 36503-36511. [6] FANG H, XIA L, YU Q, et al.Research on properties and growth kinetics of boride layer of Fe-based powder metallurgy material boriding strengthened with rare earth[J]. Integrated Ferroelectrics, 2022, 226(1): 1-14. [7] 方振东. 热处理工艺与合金化对铁基粉末冶金材料组织与力学性能的影响[D]. 南京: 南京航空航天大学, 2020. FANG Zhendong.Effects of heat treatment process and alloying on microstructure and mechanical properties of Fe-based powder metallurgy materials[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2020. [8] 何勤求, 李普明, 袁勇, 等. 陶瓷颗粒增强粉末冶金Fe- 2Cu-0.6C复合材料的微观结构和力学性能[J]. 粉末冶金技术, 2019, 37(1): 11-17, 22. HE Qinqiu, LI Puming, YUAN Yong, et al.Microstructure and mechanical properties of ceramic particle-reinforced powder metallurgy Fe-2Cu-0.6C composites[J]. Powder Metallurgy Technology, 2019, 37(1): 11-17, 22. [9] 徐建新, 姚雨, 姜鑫. 石墨烯增强铁基复合材料制备工艺及其性能的研究[J]. 机械制造与自动化, 2018, 47(4): 53-57. XU Jianxin, YAO Yu, JIANG Xin.Research on preparation process and performance of graphene reinforced iron matrix composites[J]. Machine Manufacturing and Automation, 2018, 47(4): 53-57. [10] LIU X, XIAO Z, GUAN H, et al.Friction and wear behaviours of surface densified powder metallurgy Fe-2Cu-0.6C material[J]. Powder Metallurgy, 2016, 59(5): 329-334. [11] 张忠义. 制备工艺对铁基粉末冶金航空刹车材料组织与性能的影响[D]. 长沙: 中南大学, 2007. ZHANG Zhongyi.Influence of preparation process on the organization and properties of iron-based powder metallurgy aviation brake materials[D]. Changsha: Central South University, 2007. [12] 刘东华, 钱晓泰. 汽车铁基粉末冶金零件新进展[J]. 金属材料与冶金工程, 2013, 41(4): 52-56. LIU Donghua, QIAN Xiaotai.New progress of automobile iron-based powder metallurgy parts[J]. Metal Materials and Metallurgical Engineering, 2013, 41(4): 52-56. [13] AKHTAR S, SAAD M, MISBAH R M, et al.Recent advancements in powder metallurgy: a review[J]. Materials Today: Proceedings, 2018, 5(9): 18649-18655. [14] KANDAVEL T K, CHANDRAMOULI R, SHANMUGASUNDARAM D.Experimental study of the plastic deformation and densification behaviour of some sintered low alloy P/M steels[J]. Materials & Design, 2009, 30(5): 1768-1776. [15] MADAN D S, GERMAN R M.Quantitative assessment of enhanced sintering concepts[J]. Powder Metallurgy, 1990, 33(1): 45-52. [16] BARLA N A.Effect of nickel addition on mechanical properties of powder forged Fe-Cu-C[C]// IOP Conference Series. Materials Science and Engineering. UN: IOP Publishing, 2018. [17] 党文龙, 刘祥庆, 汪礼敏, 等. 碳含量对Fe-Cu-C 扩散预合金粉末烧结性能的影响[J]. 粉末冶金技术, 2013, 31(2): 83-88. DANG Wenlong, LIU Xiangqing, WANG Limin, et al.Influence of carbon content on the properties of diffusion alloyed Fe-Cu-C sintered materials[J]. Powder Metallurgy Technology, 2013, 31(2): 83-88. [18] 黄晓星, 刘祥庆, 杨中元, 等. 含铜铁基粉末冶金零件烧结性能的研究进展[J]. 粉末冶金技术, 2015, 33(2): 133-139. HUANG Xiaoxing, LIU Xiangqing, YANG Zhongyuan, et al.Research progress on the sintering properties of copper- containing iron-based powder metallurgy parts[J]. Powder Metallurgy Technology, 2015, 33(2): 133-139. [19] 岳慧芳, 冯可芹, 李莹, 等. 石墨对钒钛铁精矿原位制备铁基摩擦材料的影响[J]. 材料热处理学报, 2015, 36(10): 16-21. YUE Huifang, FENG Keqin, LI Ying, et al.Effect of graphite content on Fe-based friction material prepared by in-situ carbothermic reduction and synthesis from vanadium and titanium iron concentrate[J]. Transactions of Materials and Heat Treatment, 2015, 36(10): 16-21. [20] GARBADE R R, DHOKEY N B.Effect of mechanical alloying of Ti and B in pre alloyed gas atomized powder on carbide dispersed austenitic matrix of Iron based hardfacing alloy[J]. Materials Characterization, 2022, 191: 112134. [21] 王行, 李松林, 彭家科, 等. 不同黏结剂对Fe-2Cu-0.8C预混合钢粉性能的影响[J]. 有色金属科学与工程, 2014, 5(1): 14-19. WANG Xing, LI Songlin, PENG Jiake, et al.Effect of different binders on properties of Fe-2Cu-0.8C premix steel powder[J]. Nonferrous Metal Science and Engineering, 2014, 5(1): 14-19. [22] CHEN H Z, LUO P, YANG Y J, et al.Effect of Mn addition and its nitridation on microstructure and properties of sintered Fe-1Mn-0.5C low-alloyed steel[J]. Journal of Materials Engineering and Performance, 2017, 26(9): 4481-4490. [23] LIANG X, JI H.Reliability of friction and wear characteristics of surface-strengthened iron-based powder metallurgy materials[J]. Integrated Ferroelectrics, 2022, 229(1): 190-209. [24] 刘双宇. 高强度铁基粉末冶金材料复合制备方法及组织性能研究[D]. 吉林: 吉林大学, 2007. LIU Shuangyu.Research on composite processing methods and their microstructure and properties of the high strength Fe-based PIM materials[D]. Jilin: Jilin University, 2007. [25] 韩凤麟. 粉末冶金零件生产用石墨粉的选择[J]. 粉末冶金工业, 2014, 24(4): 1-10. HAN Fenglin.Selection of graphite powder used in powder metallurgy parts production[J]. Powder Metallurgy Industry, 2014, 24(4): 1-10. [26] LONG A P, LI S L, WANG H, et al.Characterization of oxide on the water-atomized FeMn powder surface[J]. Applied Surface Science, 2014, 295(3): 180-188. [27] 周科朝. 高性能铁基粉末冶金材料及制备技术的现状与发展趋势[C]// 中国工程院. 中国工程科技论坛第151场——粉末冶金科学与技术发展前沿论坛论文集. 长沙: 中国工程院, 2012: 25-41. ZHOU Kezhao.Current status and perspective of high performance iron-based powder metallurgy materials and technologies[C]// Chinese Academy of Engineering Proceeding of the 151st Session of China Engineering Science and Technology Forum——Frontiers of Powder Metallurgy Science and Technology Development. Changsha: Chinese Academy of Engineering, 2012: 25-41. [28] 朱佳敏, 陈卓, 方华婵, 等. 短碳纤维/铜复合材料的制备及其组织和性能[J]. 中国有色金属学报, 2020, 30(12): 2875-2885. ZHU Jiamin, CHEN Zhuo, FANG Huachan, et al.Preparation of short carbon fibers/copper composites and their organization and properties[J]. Chinese Journal of Nonferrous Metals, 2020, 30(12): 2875-2885. [29] 李玲, 陈卓, 方华婵, 等. 微米级短碳纤维/铜基复合材料组织和摩擦性能研究[J]. 材料科学与工艺, 2021, 29(5): 48-56. LI Ling, CHEN Zhuo, FANG Huachan, et al.Study on the organization and friction properties of micron-scale short carbon fibers/copper matrix composites[J]. Materials Science and Technology, 2021, 29(5): 48-56. [30] CHEN Z, FANG H C, ZHU J M, et al.Effect of carbon type and morphology on the microstructure and properties of carbon/copper composites[J]. Wear, 2020, 460: 203473. [31] 冯志海, 李同起, 杨云华, 等. 碳纤维在高温下的结构、性能演变研究[J]. 中国材料进展, 2012, 31(8): 7-14, 32. FENG Zhihai, LI Tongqi, YANG Yunhua, et al.Evolution of the structure and performance of carbon fiberss at high temperatures[J]. Materials China, 2012, 31(8): 7-14, 32. [32] 操龙飞. 金属材料的热膨胀特性研究[D]. 武汉: 武汉科技大学, 2013. CAO Longfei.Study on thermal expansion properties of steels[D]. Wuhan: Wuhan University of Science and Technology, 2013. [33] 彭元东, 吴海明, 易健宏, 等. C含量对 Fe-Cu-C 合金性能的影响[J]. 金属材料与冶金工程, 2007(6): 15-18. PENG Yuandong, WU Haiming, YI Jianhong, et al.Effect of C content on the properties of Fe-Cu-C alloy[J]. Metal Materials and Metallurgical Engineering, 2007(6): 15-18. [34] 陈荟竹, 李松林, 王行, 等. 少量Mo添加对Fe-0.5Mn- 0.5C烧结钢组织和力学性能的影响[J]. 粉末冶金材料科学与工程, 2014, 19(5): 784-789. CHEN Huizhu, LI Songlin, WANG Xing, et al.Effect of small amount of Mo addition on the organization and mechanical properties of Fe-0.5Mn-0.5C sintered steels[J]. Materials Science and Engineering of Powder Metallurgy, 2014, 19(5): 784-789. |
|
|
|