|
|
|
| Preparation and performance evaluation of highly stable and long-cycling Li-B-Zn alloy anode |
| YANG Cheng, WU Qiumei, CHEN Libao, WU Zhibin |
| Powder Metallurgy Research Institute, Central South University, Changsha 410083, China |
|
|
|
|
Abstract Constructing a 3D skeleton inside lithium metal anodes can suppress anode volume change, reduce local current density, and retard lithium dendrite growth. In this study, Li ingots, amorphous B powder, and ZnF2 powder were used as raw materials to prepare a Li-B-Zn alloy with internal 3D skeleton via a melting method. X-ray diffractometer, scanning electron microscope, and energy dispersive spectrometer were employed to characterize the phase composition and internal skeleton structure of the alloy, while the electrochemical performance of the Li-B-Zn alloy anode was evaluated. Results show that nano-sized LiZn particles are uniformly distributed on the LiB fiber skeleton, forming a composite skeleton with abundant lithiophilic sites and excellent structural stability. In symmetric cells, the Li-B-Zn anode achieves a long cycle life of 1 500 h at a high capacity of 5 mAh/cm2. The Li-B-Zn|LFP (LiFePO4) full cell exhibits outstanding electrochemical performance, with a capacity retention rate of up to 90.15% after 370 cycles at 1 C. Li-B-Zn alloy anode has significant performance advantages in practical applications, and constructing an internal composite 3D skeleton is an efficient approach to address current challenges of lithium metal anodes.
|
|
Received: 26 May 2025
Published: 06 January 2026
|
|
|
|
|
|
[1] CHEN G Y, RICHARDSON T J.Overcharge protection for rechargeable lithium batteries using electroactive polymers[J]. Electrochemical and Solid State Letters, 2004, 7(2): A23-A26. [2] HUANG B, PAN Z F, SU X Y, et al.Recycling of lithium-ion batteries: recent advances and perspectives[J]. Journal of Power Sources, 2018, 399: 274-286. [3] ZHANG X H, LI Z, LUO L G, et al.A review on thermal management of lithium-ion batteries for electric vehicles[J]. Energy, 2022, 238: 121652. [4] KIM S, PARK G, LEE S J, et al.Lithium-metal batteries: from fundamental research to industrialization[J]. Advanced Materials, 2023, 35(43): 2206625. [5] WANG Q Y, LIU B, SHEN Y H, et al.Confronting the challenges in lithium anodes for lithium metal batteries[J]. Advanced Science, 2021, 8(17): 2101111. [6] WANG D, ZHANG W, ZHENG W T, et al.Towards high-safe lithium metal anodes: suppressing lithium dendrites via tuning surface energy[J]. Advanced Science, 2017, 4(1): 1600168. [7] CHENG X B, ZHANG R, ZHAO C Z, et al.Toward safe lithium metal anode in rechargeable batteries: a review[J]. Chemical Reviews, 2017, 117(15): 10403-10473. [8] ZHANG X Y, WANG A X, LIU X J, et al.Dendrites in lithium metal anodes: suppression, regulation, and elimination[J]. Accounts of Chemical Research, 2019, 52(11): 3223-3232. [9] CHANG S Z, FANG J B, LIU K, et al.Molecular-layer-deposited zincone films induce the formation of LiF-rich interphase for lithium metal anodes[J]. Advanced Energy Materials, 2023, 13(12): 2204002. [10] WU C, HUANG H F, LU W Y, et al.Mg doped Li-LiB alloy with in situ formed lithiophilic LiB skeleton for lithium metal batteries[J]. Advanced Science, 2020, 7(6): 1902643. [11] LIU P, SU H, LIU Y, et al.LiBr-LiF-rich solid-electrolyte interface layer on lithiophilic 3D framework for enhanced lithium metal anode[J]. Small Structures, 2022, 3(6): 2200010. [12] SANCHEZ P, BELIN C, CREPY C, et al.Electrochemical studies of lithium-boron alloys in non-aqueous media: comparison with pure lithium[J]. Journal of Applied Electrochemistry, 1989, 19(3): 421-428. [13] LIU X S, LONG K C, QING P, et al.Designing three-dimensional lithiophilic dual-skeletons-supported lithium metal anodes for long-life lithium metal batteries[J]. Science China-Materials, 2023, 66(11): 4349-56. [14] HE P, HUANG S Z, QING P, et al.Li-B-Cu anodes with a stable three-dimensional composite skeleton for lithium metal batteries[J]. Energy & Fuels, 2023, 37(23): 17988-17996. [15] TSAI C L, KOPCZYK M, SMITH R J, et al.Low temperature sintering of Ba(Zr0.8-xCexY0.2)O3-δ using lithium fluoride additive[J]. Solid State Ionics, 2010, 181(23/24): 1083-1090. [16] CAO J Q, SHI Y S, GAO A S, et al.Hierarchical Li electrochemistry using alloy-type anode for high-energy- density Li metal batteries[J]. Nature Communications, 2024, 15: 1354. [17] YAO Z Y, JIA W S, WANG Z H, et al.Fast ion/electron conducting scaffold of Li-Zn dual-phase alloy enable uniform deposition of Li metal at high current densities[J]. Journal of Energy Chemistry, 2020, 51: 285-292. [18] CHEN D P, QING P, TANG F C, et al.A self-supported hierarchic 3D double skeleton host for highly stable lithium metal batteries[J]. Materials Today Energy, 2023, 33: 101272. [19] QIAN H M, LI X Y, CHEN Q C, et al.LiZn/Li2O induced chemical confinement enabling dendrite-free Li-metal anode[J]. Advanced Functional Materials, 2024, 34(19): 2310143. [20] YE S F, CHEN X J, ZHANG R, et al.Revisiting the role of physical confinement and chemical regulation of 3D hosts for dendrite-free Li metal anode[J]. Nano-Micro Letters, 2022, 14(1): 187. [21] CAO G Q, LI X F, DUAN R X, et al.Redistribution of d-orbital in Fe-N4 active sites optimizing redox kinetics of the sulfur cathode[J]. Nano Energy, 2023, 116: 108755. |
|
|
|