|
|
|
| Loose-pack sintering preparation and properties of high-strength, low-thermal-conductivity pure-phase porous ZrB2 ceramics |
| GAO Meng, HU Jinrun, LI Tianyou, WANG Bingjun, WANG Yichen, JIANG Fengze, ZENG Yi |
| Powder Metallurgy Research Institute, Central South University, Changsha 410083, China |
|
|
|
|
Abstract Although traditional pressure-assisted sintering techniques at high temperature and the use of sintering aids can improve the formability of ZrB2 ceramics, they often cause an increase in the thermal conductivity or a decrease in high-temperature strength, hindering synergistic optimization of mechanical properties and thermal insulation performance. Here, pure-phase porous ZrB2 ceramics were fabricated via loose-pack sintering using ZrB2 raw powders with different particle size ratios. The effects of the raw powder size ratio on the microstructure, compressive performance, and thermal conductivity were investigated using X-ray diffractometer, scanning electron microscope, and computed tomography. The sintering forming, strengthening, and thermal insulation mechanisms of ceramics were elucidated. Results indicate that the porosity of loose-pack sintered ZrB2 ceramics ranges from 43.42% to 46.68% across different particle size ratios. At a fine-to-coarse powder mass ratio of 1:9, the ceramic develops a robust ZrB2 skeleton and a uniform dual-scale pore network at the micrometer level, achieving a high compressive strength of 364.70 MPa and a low thermal conductivity of only 32.79 W/(m·K). During sintering, moderate fine powders effectively reinforce the skeleton formed by coarse powders, facilitating a uniform microstructure evolution. The connected and isolated pores establish a gradient energy dissipation and defense mechanism, which synergize with the robust ZrB2 skeleton to ensure excellent compressive performance. Meanwhile, effective thermal insulation results from blocked solid conduction, prolonged gaseous heat transfer paths, induced Knudsen effect via pore structure, and enhanced phonon scattering at high-density large-angle grain boundaries.
|
|
Received: 28 April 2025
Published: 06 January 2026
|
|
|
|
|
|
[1] MOSES P L, RAUSCH V L, NGUYEN L T, et al.NASA hypersonic flight demonstrators: overview, status, and future plans[J]. Acta Astronautica, 2004, 55(3/4/5/6/7/8/9): 619-630. [2] CHANG X Y, CHENG X T, ZHANG H, et al.Superelastic carbon aerogels: an emerging material for advanced thermal protection in extreme environments[J]. Advanced Functional Materials, 2023, 33(26): 2215168. [3] UYANNA O, NAJAFI H.Thermal protection systems for space vehicles: a review on technology development, current challenges and future prospects[J]. Acta Astronautica, 2020, 176: 341-356. [4] SHVYDYUK K O, NUNES-PEREIRA J, RODRIGUES F F, et al.Review of ceramic composites in aeronautics and aerospace: a multifunctional approach for TPS, TBC and DBD applications[J]. Ceramics, 2023, 6(1): 195-230. [5] PETERS A B, ZHANG D J, CHEN S, et al.Materials design for hypersonics[J]. Nature Communications, 2024, 15(1): 3328. [6] 韩清壮, 向阳, 彭志航, 等. 防隔热一体化材料研究进展[J]. 粉末冶金材料科学与工程, 2025, 30(2): 79-100. HAN Qingzhuang, XIANG Yang, PENG Zhihang, et al.Research progress of anti-thermal insulation materials[J]. Materials Science and Engineering of Powder Metallurgy, 2025, 30(2): 79-100. [7] NI D W, CHENG Y, ZHANG J P, et al.Advances in ultra-high temperature ceramics, composites, and coatings[J]. Journal of Advanced Ceramics, 2022, 11(1): 156. [8] GOLLA B R, MUKHOPADHYAY A, BASU B, et al.Review on ultra-high temperature boride ceramics[J]. Progress in Materials Science, 2020, 111: 100651. [9] 李天佑, 曾毅, 胡锦润, 等. 浆料涂刷-热压法制备2D Cf-ZrB2-SiC复合材料的力学与烧蚀性能[J]. 粉末冶金材料科学与工程, 2024, 29(4): 275-289. LI Tianyou, ZENG Yi, HU Jinrun, et al.Mechanical and ablation properties of 2D Cf-ZrB2-SiC composites prepared by slurry brushing-hot pressing method[J]. Materials Science and Engineering of Powder Metallurgy, 2024, 29(4): 275-289. [10] ASL M S, NAYEBI B, AHMADI Z, et al.Effects of carbon additives on the properties of ZrB2-based composites: a review[J]. Ceramics International, 2018, 44(7): 7334-7348. [11] GURIA J F, BANSAL A, KUMAR V.Effect of additives on the thermal conductivity of zirconium diboride based composites: a review[J]. Journal of the European Ceramic Society, 2021, 41(1): 1-23. [12] HARRINGTON G J K, HILMAS G E, FAHRENHOLTZ W G. Effect of carbon on the thermal and electrical transport properties of zirconium diboride[J]. Journal of the European Ceramic Society, 2015, 35(3): 887-896. [13] ZIMMERMANN J W, HILMAS G E, FAHRENHOLTZ W G, et al.Thermophysical properties of ZrB2 and ZrB2-SiC ceramics[J]. Journal of the American Ceramic Society, 2008, 91(5): 1405-1411. [14] CHENG Y H, LIU Y X, AN Y M, et al.High thermal-conductivity rGO/ZrB2-SiC ceramics consolidated from ZrB2-SiC particles decorated GO hybrid foam with enhanced thermal shock resistance[J]. Journal of the European Ceramic Society, 2020, 40(8): 2760-2767. [15] LIU Y J, SHA J J, SU C, et al.Phase composition, densification behavior and high-temperature strength of carbon-doped ZrB2-ZrSi2 ceramics[J]. Ceramics International, 2023, 49(23): 39083-39089. [16] VINCI A, ZOLI L, GALIZIA P, et al.Influence of Y2O3 addition on the mechanical and oxidation behaviour of carbon fibre reinforced ZrB2/SiC composites[J]. Journal of the European Ceramic Society, 2020, 40(15): 5067-5075. [17] GILD J, WRIGHT A, QUIAMBAO-TOMKO K, et al.Thermal conductivity and hardness of three single-phase high-entropy metal diborides fabricated by borocarbothermal reduction and spark plasma sintering[J]. Ceramics International, 2020, 46(5): 6906-6913. [18] CHEN H, XIANG H M, DAI F Z, et al.Porous high entropy (Zr0.2Hf0.2Ti0.2Nb0.2Ta0.2)B2: a novel strategy towards making ultrahigh temperature ceramics thermal insulating[J]. Journal of Materials Science & Technology, 2019, 35(10): 2404-2408. [19] WEN Z H, TANG Z Y, LIU Y W, et al.Ultrastrong and high thermal insulating porous high-entropy ceramics up to 2 000 ℃[J]. Advanced Materials, 2024, 36(14): 2311870. [20] HAMMEL E C, IGHODARO O L R, OKOLI O I. Processing and properties of advanced porous ceramics: an application based review[J]. Ceramics International, 2014, 40(10): 15351-15370. [21] DELE-AFOLABI T T, HANIM M A A, NORKHAIRUNNISA M, et al. Research trend in the development of macroporous ceramic components by pore forming additives from natural organic matters: a short review[J]. Ceramics International, 2017, 43(2): 1633-1649. [22] 花腾宇, 夏鑫, 马莉, 等. 硬质合金晶粒度对其表面金刚石涂层的影响[J]. 粉末冶金材料科学与工程, 2023, 28(2): 180-191. HUA Tengyu, XIA Xin, MA Li, et al.Effect of cemented carbide grain size on diamond coating[J]. Materials Science and Engineering of Powder Metallurgy, 2023, 28(2): 180-191. [23] 黄辉. 颗粒级配技术及其在含能材料中的应用[J]. 含能材料, 2001, 9(4): 161-164. HUANG Hui.Particle grade technique and application on energetic materials[J]. Energetic Materials, 2001, 9(4): 161-164. [24] 王世界, 尹艺程, 邱鑫, 等. 超高温多孔陶瓷的制备、性能及应用研究进展[J]. 材料导报, 2022, 36(12): 57-64. WANG Shijie, YIN Yicheng, QIU Xin, et al.Preparation, properties and application of ultra-high temperature porous ceramics: a review[J]. Materials Reports, 2022, 36(12): 57-64. [25] JIN X X, DONG L M, XU H Y, et al.Effects of porosity and pore size on mechanical and thermal properties as well as thermal shock fracture resistance of porous ZrB2-SiC ceramics[J]. Ceramics International, 2016, 42(7): 9051-9057. [26] JIN X X, ZHANG X H, HAN J C, et al.Thermal shock behavior of porous ZrB2-SiC ceramics[J]. Materials Science and Engineering A, 2013, 588: 175-180. [27] JIN X X, DONG L M, LI Q, et al.Thermal shock cracking of porous ZrB2-SiC ceramics[J]. Ceramics International, 2016, 42(11): 13309-13313. [28] YUAN H P, LI J G, SHEN Q, et al.Preparation and thermal conductivity characterization of ZrB2 porous ceramics fabricated by spark plasma sintering[J]. International Journal of Refractory Metals and Hard Materials, 2013, 36: 225-231. [29] YUAN H P, LI J G, SHEN Q, et al.Preparation and microstructure of porous ZrB2 ceramics using reactive spark plasma sintering method[J]. Journal of Wuhan University of Technology-Materials Science, 2015, 30(3): 512-515. [30] YUAN H P, LI J G, SHEN Q, et al.In situ synthesis and sintering of ZrB2 porous ceramics by the spark plasma sintering-reactive synthesis (SPS-RS) method[J]. International Journal of Refractory Metals and Hard Materials, 2012, 34: 3-7. [31] CHEN H, XIANG H M, DAI F Z, et al.Low thermal conductivity and high porosity ZrC and HfC ceramics prepared by in-situ reduction reaction/partial sintering method for ultrahigh temperature applications[J]. Journal of Materials Science & Technology, 2019, 35(12): 2778-2784. [32] YAN N N, SHI X H, LI K, et al.Adsorption properties and preparation of porous TaC ceramics with regular steps[J]. Journal of Alloys and Compounds, 2018, 731: 971-977. [33] YAN N N, FU Q G, ZHANG Y Y, et al.Preparation of pore-controllable zirconium carbide ceramics with tunable mechanical strength, thermal conductivity and sound absorption coefficient[J]. Ceramics International, 2020, 46(11): 19609-19616. [34] MEDRI V, MAZZOCCHI M, BELLOSI A.ZrB2-based sponges and lightweight devices[J]. International Journal of Applied Ceramic Technology, 2011, 8(4): 815-823. [35] LANDI E, SCITI D, MELANDRI C, et al.Ice templating of ZrB2 porous architectures[J]. Journal of the European Ceramic Society, 2013, 33(10): 1599-1607. [36] RAMBO C R, CAO J, RUSINA O, et al.Manufacturing of biomorphic (Si,Ti,Zr)-carbide ceramics by sol-gel processing[J]. Carbon, 2005, 43(6): 1174-1183. [37] WU H B, YIN J, LIU X J, et al.Aqueous gelcasting and pressureless sintering of zirconium diboride foams[J]. Ceramics International, 2014, 40(4): 6325-6330. [38] WU H B, YIN J, LI Y S, et al.Aqueous gelcasted ZrB2-SiC foams derived from composite poring mechanisms[J]. Ceramics International, 2016, 42(1): 1573-1580. [39] DU J C, ZHANG X H, HONG C Q, et al.Microstructure and mechanical properties of ZrB2-SiC porous ceramic by camphene-based freeze casting[J]. Ceramics International, 2013, 39(2): 953-957. [40] QI Y S, JIANG K, ZHOU C L, et al.Preparation and properties of high-porosity ZrB2-SiC ceramics by water-based freeze casting[J]. Journal of the European Ceramic Society, 2021, 41(4): 2239-2246. [41] LI F, KANG Z, HUANG X, et al.Preparation of zirconium carbide foam by direct foaming method[J]. Journal of the European Ceramic Society, 2014, 34(15): 3513-3520. [42] LI F, HUANG X.Preparation of highly porous ZrB2/ZrC/SiC composite monoliths using liquid precursors via direct drying process[J]. Journal of the European Ceramic Society, 2018, 38(4): 1103-1111. [43] LI F, WANG X G, HUANG X, et al.Preparation of ZrC/SiC porous self-supporting monoliths via sol-gel process using polyethylene glycol as phase separation inducer[J]. Journal of the European Ceramic Society, 2018, 38(14): 4806-4813. [44] ZHONG Z X, XU H F, ZHANG X F, et al.Bonding ZrB2-SiC-G ceramics using modified organic adhesive for engineering applications at ultra high temperatures in air[J]. Ceramics International, 2018, 44(4): 3810-3815. [45] HE J F, ZENG Y, HUANG Z, et al.Low temperature-rapid preparation of HfB2-SiC powders by microwave/molten salt assisted boro/carbothermal reduction[J]. Journal of the Ceramic Society of Japan, 2021, 129(8): 528-534. [46] WANG S J, YANG Y F, CUI J Y, et al.Preparation and properties of porous ZrB2 ceramics via combining in-situ boro/carbothermal reduction and partial sintering approach[J]. Ceramics International, 2022, 48(18): 27051-27063. [47] QI Y S, CHEN G, CHENG Y H, et al.Preparation and properties of ZrB2-SiC porous ceramics by spark plasma sintering[J]. Journal of the Ceramic Society of Japan, 2019, 127(7): 469-473. [48] LIU D, JIN X X, LI N, et al.In-situ synthesis of hierarchically high porosity ZrB2 ceramics from carbon aerogel template with excellent performance in thermal insulation and light absorption[J]. Journal of the European Ceramic Society, 2024, 44(2): 738-747. [49] ZHANG X, HE J F, HAN L, et al.Foam gel-casting preparation of SiC bonded ZrB2 porous ceramics for high-performance thermal insulation[J]. Journal of the European Ceramic Society, 2023, 43(1): 37-46. [50] WANG S J, YIN Y C, CHEN L G, et al.Controllable preparation of porous ZrB2-SiC ceramics via using KCl space holders[J]. Ceramics International, 2021, 47(24): 33978-33987. [51] WANG S J, CHEN H N, LI Y, et al.A novel strategy for synthesizing porous ZrB2-SiC ceramics via boro/ carbothermal reaction process templated pore-forming approach[J]. Journal of the European Ceramic Society, 2023, 43(9): 3905-3916. [52] SHI X P, LIU S Y, NIE H L, et al.Study of cell irregularity effects on the compression of closed-cell foams[J]. International Journal of Mechanical Sciences, 2018, 135: 215-225. [53] TAN J C, BENNETT T D, CHEETHAM A K.Chemical structure, network topology, and porosity effects on the mechanical properties of zeolitic imidazolate frameworks[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(22): 9938-9943. [54] YAN W, CHEN Z, LI G Q, et al.Preparation and enhanced mechanical properties of novel Al2O3-C ceramic filter reinforced by microporous powder and SiC whiskers[J]. Journal of the American Ceramic Society, 2024, 107(4): 2725-2737. [55] HOU F J, QU G L, YAN Z W, et al.Properties and relationships of porous concrete based on Griffith’s theory: compressive strength, permeability coefficient, and porosity[J]. Materials and Structures, 2024, 57(3): 52. [56] NEUHÖFER A M, HERRMANN K, LEBEDA F, et al. High-temperature thermal transport in porous silica materials: direct observation of a switch from conduction to radiation[J]. Advanced Functional Materials, 2022, 32(8): 2108370. [57] GAMBARYAN-ROISMAN T, SHAPIRO M, SHAVIT A.Effect of double-diffusive heat transfer on thermal conductivity of porous sintered ceramics: macrotransport analysis[J]. International Journal of Heat and Mass Transfer, 2011, 54(23/24): 4844-4855. [58] MCCORMACK S, CAO H T, MARTINS J P, et al.The effect of porosity, mixed molecular/Knudsen diffusion, and a surface barrier layer on steam corrosion of Yb2Si2O7[J]. Corrosion Science, 2023, 219: 111238. [59] ZHOU Y, FAHRENHOLTZ W G, GRAHAM J, et al.Electronic structure and thermal conductivity of zirconium carbide with hafnium additions[J]. Journal of the American Ceramic Society, 2021, 104(9): 4708-4717. [60] LI F, LIU X, MA N, et al.Thermoelectric zintl compound In1-xGaxTe: pure acoustic phonon scattering and dopant- induced deformation potential reduction and lattice shrink[J]. Angewandte Chemie, 2022, 134(35): e202208216. [61] SMITH D S, PUECH F, NAIT-ALI B, et al.Grain boundary thermal resistance and finite grain size effects for heat conduction through porous polycrystalline alumina[J]. International Journal of Heat and Mass Transfer, 2018, 121: 1273-1280. [62] BABAEI H, MCGAUGHEY A J H, WILMER C E. Effect of pore size and shape on the thermal conductivity of metal-organic frameworks[J]. Chemical Science, 2017, 8(1): 583-589. [63] WANG X J, GU W B, LU H.Effects of three-dimensional pore structure on effective thermal conductivities of thermal insulation materials[J]. International Communications in Heat and Mass Transfer, 2022, 139: 106523. |
|
|
|