|
|
|
| Porosity suppression process of laser cladding nickel-based coatings reforced with 57%WC on P550 non-magnetic steel |
| LI Jiajia1, LIU Lilan1, WANG Jiayi1, WANG Shen1, HAN Feiyan2 |
1. School of Mechanical and Precision Instrument Engineering, Xi'an University of Technology, Xi'an 710048, China; 2. School of Aeronautical Manufacturing Engineering, Xi'an Aeronautical Polytechnic Institute, Xi'an 710089, China |
|
|
|
|
Abstract In response to the technical challenge of high porosity in the laser cladding of high WC content non-magnetic nickel-based alloy powder on P550 non-magnetic steel surface, the response surface methodology and single factor method were used to design experiments. The influences of laser cladding process parameters on porosity were analyzed and the main effect factor was researched. Taking the laser power, scanning speed, powder feed rate, and overlap ratio as inputs and the porosity as the response target, a multivariate regression prediction model was established to optimize the process parameters. The results show that the coating porosity can be reduced to 0.22% when laser power is 1 015 W, scanning speed is 5.1 mm/s, powder feed rate is 0.6 r/min, and overlap ratio is 40%, meeting the requirement of engineering application. The microstructure of the coating is uniform, which is mainly composed of cellular crystal, dendritic crystal, and secondary dendritic crystal. The microhardness of the coating is about 1.6 times than that of the matrix, and the wear rate is reduced to 1.5% of the substrate. The research results can provide a process solution for laser cladding low porosity and high wear-resistance coating for the surface strengthening of non-magnetic drilling tools, and promote the engineering application of this technology in the field of petroleum drilling.
|
|
Received: 27 July 2025
Published: 06 January 2026
|
|
|
|
|
|
[1] 蒲文学, 范光第, 朱建建, 等. 磁性随钻测斜仪所需无磁钻具长度及影响因素研究[J]. 石油钻探技术, 2022, 50(4): 129-134. PU Wenxue, FAN Guangdi, ZHU Jianjian, et al.Research on the length of non-magnetic drilling tools for magnetic inclinometer while drilling and its influence factors[J]. Petroleum Drilling Techniques, 2022, 50(4): 129-134. [2] 鲁一荻, 张骁勇, 侯硕, 等. 高熵合金的发展及工业应用展望[J]. 稀有金属材料与工程, 2021, 50(1): 333-341. LU Yidi, ZHANG Xiaoyong, HOU Shuo, et al.Perspective on industrial applications and research progress of high-entropy alloys[J]. Rare Metal Materials and Engineering, 2021, 50(1): 333-341. [3] 毛洁, 刘宗德, 路鑫杰, 等. P550不锈钢表面激光熔覆Ni-Cr-Mo合金涂层的实验研究[J]. 兵器材料科学与工程, 2024, 47(5): 84-92. MAO Jie, LIU Zongde, LU Xinjie, et al.Experimental study on laser cladding of Ni-Cr-Mo alloy coating on surface of P550 stainless steel[J]. Ordnance Material Science and Engineering, 2024, 47(5): 84-92. [4] WANG T, WANG M S, WANG Z Y, et al.Effect of in situ NbC synthesis via laser cladding on microstructure and slurry erosion of carbide-reinforced iron-based coatings[J]. Materials Today Communications, 2025, 42: 111314. [5] ZHAO W, MA Q, DU B S, et al.Effect of in-situ formed multi-carbides on the microstructure and wear resistance of AlCoCrFeNi-based high entropy alloy laser cladded coatings[J]. Materials Characterization, 2025, 223: 114918. [6] 任津毅, 牟建伟, 于传军, 等. AF1410钢表面激光熔覆WC增强Ni基复合涂层的组织与性能[J]. 金属热处理, 2025, 50(6): 261-269. REN Jinyi, MU Jianwei, YU Chuanjun, et al.Microstructure and properties of WC reinforced Ni-based composite coating on AF1410 steel surface by laser cladding[J]. Heat Treatment of Metals, 2025, 50(6): 261-269. [7] ZHANG K, LIU C H, WANG W L, et al.Microstructure, performance, strengthening and toughening mechanisms of WC-reinforced Inconel 625 gradient composite coating by laser cladding on nonmagnetic steel[J]. Surface and Coatings Technology, 2025, 496: 131657. [8] YANG Q, ZHANG W D, ZHOU L, et al.Multi-scale hybrid carbide reinforced Ni matrix composite coatings via laser cladding and an in-situ synthesis strategy[J]. Tribology International, 2026, 214: 111106. [9] 刘钊鹏, 顾俊, 王健超, 等. WC-Co硬质合金涂层的激光熔覆工艺研究[J]. 应用激光, 2021, 41(4): 715-723. LIU Zhaopeng, GU Jun, WANG Jianchao, et al.Study on laser cladding process of WC-Co carbide coating[J]. Applied Laser, 2021, 41(4): 715-723. [10] 徐磊, 王匀, 许桢英, 等. 同轴送粉激光熔覆气泡逃逸行为及分布研究[J]. 精密成形工程, 2023, 15(1): 137-145. XU Lei, WANG Yun, XU Zhenying, et al.Analysis of bubble escape behavior and distribution of the coaxial powder feeding laser cladding[J]. Journal of Netshape Forming Engineering, 2023, 15(1): 137-145. [11] 徐建洲, 黄健康, 谢燕, 等. 激光熔丝增材制造过程气孔演化行为研究[J]. 金属加工(热加工), 2025(9): 127-136. XU Jianzhou, HUANG Jiankang, XIE Yan, et al.Study on the evolution behavior of pore in laser wire additive manufacturing process[J]. MW Metal Forming, 2025(9): 127-136. [12] HUANG Y Z, FLEMING T G, CLARK S J, et al.Keyhole fluctuation and pore formation mechanisms during laser powder bed fusion additive manufacturing[J]. Nature Communications, 2022, 13(1): 1170. [13] ZHANG P Y, ZHOU X, CHENG X, et al.Elucidation of bubble evolution and defect formation in directed energy deposition based on direct observation[J]. Additive Manufacturing, 2020, 32: 101026. [14] 石岩, 魏登松. 激光粉末床熔融增材制造未熔合气孔缺陷形成机理研究[J]. 中国激光, 2023, 50(20): 139-151. SHI Yan, WEI Dengsong.Lack-of-fusion porosity defects formation mechanism in laser powder bed fusion additive manufacturing[J]. Chinese Journal of Lasers, 2023, 50(20): 139-151. [15] 李强, 付涛, 杨坤, 等. 激光熔覆镍基碳化钨金属陶瓷气孔问题研究[J]. 激光杂志, 2006, 27(3): 61-62. LI Qiang, FU Tao, YANG Kun, et al.Study on porosity of Ni60+WC coating by laser-clad[J]. Laser Journal, 2006, 27(3): 61-62. [16] 陈艳霞, 钟敏霖, 刘文今, 等. 激光送粉熔覆WC/Co硬质合金的气孔问题[J]. 金属热处理学报, 2002, 23(2): 49-53. CHEN Yanxia, ZHONG Minlin, LIU Wenjin, et al.Porosity investigation in laser cladding WC/Co cemented carbide with powder feeding[J]. Transactions of Metal Heat Treatment, 2002, 23(2): 49-53. [17] 张楠. 电磁复合场对熔覆层气孔和WC颗粒分布影响研究[D]. 大连: 大连理工大学, 2019. ZHANG Nan.Study on the effect of electromagnetic composite field on the distribution of pore and WC particles in cladding layer[D]. Dalian: Dalian University of Technology, 2019. [18] 胡勇, 孟庆鑫, 王梁, 等. 基于稳态磁场阻尼效应的激光熔覆气孔缺陷抑制机制[J]. 中国表面工程, 2024, 37(3): 14-24. HU Yong, MENG Qingxin, WANG Liang, et al.Inhibition mechanism of laser-cladding porosity defects based on steady-state magnetic-field damping effect[J]. China Surface Engineering, 2024, 37(3): 14-24. [19] CARTER L N, ESSA K, ATTALLAH M M.Optimisation of selective laser melting for a high temperature Ni-superalloy[J]. Rapid Prototyping Journal, 2015, 21(4): 423-432. [20] 刘丽兰, 李思聪, 豆卫涛, 等. 316L不锈钢表面激光熔覆Ni60合金涂层的工艺优化与性能研究[J]. 中国激光, 2024, 51(16): 118-131. LIU Lilan, LI Sicong, DOU Weitao, et al.Process optimization and performance analysis for laser-cladding Ni60 alloy coating on surface of 316L stainless steel[J]. Chinese Journal of Lasers, 2024, 51(16): 118-131. [21] 于学鑫, 李城昕, 孟超鑫, 等. 整体高温辅助激光定向能量沉积Al2O3/ZrO2共晶陶瓷组织性能研究[J]. 航空制造技术, 2025, 68(8): 57-64. YU Xuexin, LI Chengxin, MENG Chaoxin, et al.Effect of integral high-temperature assist on microstructure and mechanical properties of Al2O3/ZrO2 eutectic ceramics prepared by laser directed energy deposition[J]. Aeronautical Manufacturing Technology, 2025, 68(8): 57-64. [22] 刘艳芬, 王士峰, 尹玉婷, 等. 气缸套表面耐磨热障涂层制备与性能研究[J]. 焊接技术, 2024, 53(2): 25-30. LIU Yanfen, WANG Shifeng, YIN Yuting, et al.Study on preparation and properties of wear-resistant thermal barrier coating on the surface of cylinder liner[J]. Welding Technology, 2024, 53(2): 25-30. [23] 刘丽兰, 杨帆, 豆卫涛, 等. 56NiCrMoV7钢激光熔覆Ni60合金涂层的质量预测与性能分析[J]. 粉末冶金材料科学与工程, 2024, 29(4): 263-274. LIU Lilan, YANG Fan, DOU Weitao, et al.Quality prediction and performance analysis of laser cladding Ni60 coating on 56NiCrMoV7 steel[J]. Materials Science and Engineering of Powder Metallurgy, 2024, 29(4): 263-274. [24] 姚鑫宇, 林强, 丁昊昊, 等. 基于田口-灰色关联法的Ni60+WC激光熔覆涂层工艺参数优化[J]. 表面技术, 2023, 52(11): 394-405. YAO Xinyu, LIN Qiang, DING Haohao, et al.Optimization of process parameters of Ni60+WC laser cladding coating based on Taguchi-Grey relation method[J]. Surface Technology, 2023, 52(11): 394-405. |
|
|
|