|
|
|
| Research progress and development trend of PM superalloys |
| WANG Jie1,2, LIU Zhiling1,2, JIA Jian2, QU Jinglong2, ZHANG Shaoming3 |
1. High Temperature Material Research Institute, Central Iron & Steel Research Institute, Beijing 100081, China; 2. Beijing GAONA Materials & Technology Co., Ltd, Beijing, 10008l, China; 3. China Iron & Steel Research Institute Group Co., Ltd, Beijing, 100081, China |
|
|
|
|
Abstract As a key material for turbine disks, powder metallurgy (PM) superalloys are developing in the direction of higher performance. However, there are still some urgent key problems in the preparation process of the alloys, which restrict the further development and application. This paper outlines the progress of PM superalloys from three aspects: the development history, the composition, and the preparation process, analyzes the causes and corresponding solutions to the problems of difficult removal of inclusions, easy to crack, and high cost in the alloys, summarizes the current status of the research on PM superalloys, and looks forward to the future development trend of the alloys.
|
|
Received: 22 July 2025
Published: 06 January 2026
|
|
|
|
|
|
[1] 张瑞, 刘鹏, 崔传勇, 等. 国内航空发动机涡轮盘用铸锻难变形高温合金热加工研究现状与展望[J]. 金属学报, 2021, 57(10): 1215-1228. ZHANG Rui, LIU Peng, CUI Chuanyong, et al.Present research situation and prospect of hot working of cast and wrought superalloys for aero-engine turbine disk in China[J]. Acta Metallurgica Sinica, 2021, 57(10): 1215-1228. [2] 曹镔, 刘祖铭, 王建川, 等. 氩气雾化Sc、Y微合金化René104镍基高温合金粉末的组织与性能[J]. 粉末冶金材料科学与工程, 2023, 28(2): 192-202. CAO Bin, LIU Zuming, WANG Jianchuan, et al.Microstructure and properties of Sc, Y microalloyed René104 nickel-based superalloy powders prepared by argon atomization[J]. Materials Science and Engineering of Powder Metallurgy, 2023, 28(2): 192-202. [3] 曲选辉, 张国庆, 章林. 粉末冶金技术在航空发动机中的应用[J]. 航空材料学报, 2014, 34(1): 1-10. QU Xuanhui, ZHANG Guoqing, ZHANG Lin.Applications of powder metallurgy technologies in aero-engines[J]. Journal of Aeronautical Materials, 2014, 34(1): 1-10. [4] 张义文, 刘建涛. 粉末高温合金研究进展[J]. 中国材料进展, 2013(1): 1-11. ZHANG Yiwen, LIU Jiantao.Development in powder metallurgy superalloy[J]. Materials China, 2013(1): 1-11. [5] 曲敬龙, 张雪良, 杨树峰, 等. 粉末高温合金中夹杂物问题的研究进展[J]. 粉末冶金工业, 2020, 30(5): 1-11. QU Jinglong, ZHANG Xueliang, YANG Shufeng, et al.Research on inclusions in powder metallurgy superalloy: a review[J]. Powder Metallurgy Industry, 2020, 30(5): 1-11. [6] 张雪良, 陶宇, 曲敬龙, 等. 高温合金洁净度的系统分析方法综述[J]. 钢铁研究学报, 2021, 33(12): 1219-1227. ZHANG Xueliang, TAO Yu, QU Jinglong, et al.A review of systematic analysis of superalloy cleanliness[J]. Journal of Iron and Steel Research, 2021, 33(12): 1219-1227. [7] LIU Z L, LIU W, ZHANG H, et al.Dramatically improving thermoplasticity of FGH4096 superalloy by a novel sub- solvus temperature holding followed by extremely slow cooling[J]. Journal of Materials Research and Technology, 2023, 24: 1973-1990. [8] WANG J, HUANG H L, XIN D, et al.Dissolution behavior and kinetics of the γ′ precipitates within a novel powder metallurgy Ni-based superalloy[J]. Journal of Materials Research and Technology, 2024, 30: 1950-1961. [9] WANG J, HUANG H L, XIN D, et al.The evolution behavior and mechanism of γ′ particles during hot deformation in a new P/M nickel-based superalloy[J]. Materials Characterization, 2024, 217: 114359. [10] 张明, 刘国权, 胡本芙. 镍基粉末高温合金热加工变形过程中显微组织不稳定性对热塑性的影响[J]. 金属学报, 2017, 53(11): 1469-1477. ZHANG Ming, LIU Guoquan, HU Benfu.Effect of microstructure instability on hot plasticity during thermomechanical processing in PM nickel-based superalloy[J]. Acta Metallurgica Sinica, 2017, 53(11): 1469-1477. [11] 刘明东, 张莹, 黄虎豹, 等. 某镍基粉末高温合金盘坯的热处理开裂分析[J]. 粉末冶金工业, 2017, 27(1): 48-52. LIU Mingdong, ZHANG Ying, HUANG Hubao, et al.Analysis of heat treatment cracking of one Ni-based powder metallurgy superalloy disk[J]. Powder Metallurgy Industry, 2017, 27(1): 48-52. [12] GAYDA J, KANTZOS P, MILLER J.Quench crack behavior of nickel-base disk superalloys[J]. Practical Failure Analysis, 2003, 3(1): 55-59. [13] 胡本芙, 李慧英, 章守华. 粉末高温合金热处理裂纹形成原因的研究[J]. 金属学报, 1987, 23(2): 217-222, 251-252. HU Benfu, LI Huiying, ZHANG Shouhua. Study on crack formation of P/M superalloy during heat treatment[J]. Acta Metallurgica Sinica, 1987, 23(2): 217-222, 251-252. [14] 于苏洋, 王晓峰, 王旭青, 等. 一种提高粉末镍基高温合金及其制件保载裂纹扩展抗性的制备方法: CN117488220A[P].2024-02-02. YU Suyang, WANG Xiaofeng, WANG Xuqing, et al. A preparation method for improving the load-bearing crack extension resistance of nickel-based powder metallurgy superalloys and their fabricated parts: CN117488220A[P].2024-02-02. [15] 张义文, 上官永恒. 粉末高温合金的研究与发展[J]. 粉末冶金工业, 2004, 14(6): 30-43. ZHANG Yiwen, SHANGGUAN Yongheng.Research and development in P/M superalloy[J]. Powder Metallurgy Industry, 2004, 14(6): 30-43. [16] 韩志宇, 曾光, 梁书锦, 等. 镍基高温合金粉末制备技术的发展现状[J]. 中国材料进展, 2014, 33(12): 748-755. HAN Zhiyu, ZENG Guang, LIANG Shujin, et al.Development in powder production technology of Ni-based superalloy[J]. Materials China, 2014, 33(12): 748-755. [17] YANG L B, REN X N, GE C C, et al.Status and development of powder metallurgy nickel-based disk superalloys[J]. International Journal of Materials Research, 2019, 110(10): 901-910. [18] 叶林. 钪元素对粉末高温合金组织与力学性能的影响[D]. 长沙: 中南大学, 2023. YE Lin.Influence of scandium addition on the microstructure and mechanical properties of powder metallurgy superalloy[D]. Changsha: Central South University, 2023. [19] 史振宇, 刘晓文, 宋来聪, 等. 航空发动机应用领域粉末高温合金的研究进展[J]. 中国粉体技术, 2025, 31(1): 46-60. SHI Zhenyu, LIU Xiaowen, SONG Laicong, et al.Research progress of powder metallurgy superalloy in aero engine applications[J]. China Powder Science and Technology, 2025, 31(1): 46-60. [20] 吴超杰, 陶宇, 贾建. 第四代粉末高温合金成分选取范围研究[J]. 粉末冶金工业, 2014, 24(1): 20-25. WU Chaojie, TAO Yu, JIA Jian.Study on composition variation range of the fourth generation PM superalloys[J]. Powder Metallurgy Industry, 2014, 24(1): 20-25. [21] 张义文, 刘建涛, 贾建, 等. 粉末高温合金研究进展[J]. 粉末冶金工业, 2022, 32(6): 150-156. ZHANG Yiwen, LIU Jiantao, JIA Jian, et al.Development of powder metallurgy superalloy[J]. Powder Metallurgy Industry, 2022, 32(6): 150-156. [22] ZHU L H, WEI B, PAN H, et al.Dynamic deformation mechanism for distinct flow behaviors in FGH4113A superalloy with high γ′ content during isothermal compression at sub-/near-/super-solvus temperatures[J]. Materials & Design, 2024, 241: 112890. [23] TIAN T, HAO Z B, LI X G, et al.Influence of aging treatment on microstructure and properties of a novel spray formed powder metallurgy superalloy FGH100L[J]. Journal of Alloys and Compounds, 2020, 830: 154699. [24] 张义文, 刘建涛, 贾建, 等. 欧美第四代粉末高温合金研究进展[J]. 粉末冶金工业, 2022, 32(1): 1-14. ZHANG Yiwen, LIU Jiantao, JIA Jian, et al.Recent development of fourth generation powder metallurgy superalloys in America and Europe[J]. Powder Metallurgy Industry, 2022, 32(1): 1-14. [25] POWELL A, BAIN K, WESSMAN A, et al.Advanced supersolvus nickel powder disk alloy DOE: chemistry, properties, phase formations and thermal stability[C]// HARDY M, HURON E, GLATZEL U, et al. Superalloys 2016: Proceedings of the 13th Intenational Symposium of Superalloys. Hoboken: John Wiley & Sons, Inc., 2016: 189. [26] 吴凯, 刘国权, 胡本芙, 等. 新型涡轮盘用高性能粉末高温合金的研究进展[J]. 中国材料进展, 2010, 29(3): 23-32. WU Kai, LIU Guoquan, HU Benfu, et al.Research progress of new type high-performance P/M turbine disk superalloy[J]. Materials China, 2010, 29(3): 23-32. [27] LI Y P, YE X J, LI J X, et al.Influence of cobalt addition on microstructure and hot workability of IN713C superalloy[J]. Materials & Design, 2017, 122: 340-346. [28] GUI C Y, SATO A, GU Y F, et al.Microstructure and yield strength of UDIMET 720LI alloyed with Co-16.9 Wt Pct Ti[J]. Metallurgical and Materials Transactions A, 2005, 36(11): 2921-2927. [29] 贾建, 罗俊鹏, 张浩鹏, 等. W元素在新型镍基粉末高温合金中的强化作用[J]. 材料导报, 2024, 38(15): 54-59. JIA Jian, LUO Junpeng, ZHANG Haopeng, et al.Strengthening effect of W element in new nickel-based powder metallurgy superalloys[J]. Materials Reports, 2024, 38(15): 54-59. [30] JOHNSON W R, BARRETT C R, NIX W D.The high-temperature creep behavior of nickel-rich Ni-W solid solutions[J]. Metallurgical Transactions, 1972, 3(4): 963-969. [31] LOCQ D, CARON P.On some advanced nickel-based superalloys for disk applications[J]. Aerospace Lab, 2011(3): 1-9. [32] 胡本芙, 田高峰, 贾成厂, 等. 涡轮盘用高性能粉末高温合金的优化设计探讨[J]. 粉末冶金技术, 2009, 27(4): 292-300. HU Benfu, TIAN Gaofeng, JIA Chengchang, et al.Optimization design of the high performance powder metallurgy superalloy for turbine disk[J]. Powder Metallurgy Technology, 2009, 27(4): 292-300. [33] ANTONOV S, DETROIS M, HELMINK R C, et al.Precipitate phase stability and compositional dependence on alloying additions in γ-γ′-δ-η Ni-base superalloys[J]. Journal of Alloys and Compounds, 2015, 626: 76-86. [34] 张浩鹏, 白佳铭, 李新宇, 等. Hf和Ta对镍基粉末高温合金蠕变断裂特征和性能的影响[J]. 金属学报, 2025, 61(4): 583-596. ZHANG Haopeng, BAI Jiaming, LI Xinyu, et al.Effect of Hf and Ta on creep rupture characteristics and properties of powder metallurgy Ni-based superalloys[J]. Acta Metallurgica Sinica, 2025, 61(4): 583-596. [35] 邢鹏宇, 张义文, 贾建. Ta含量对FGH4098粉末高温合金力学性能的影响[J]. 粉末冶金工业, 2019, 29(2): 33-38. XING Pengyu, ZHANG Yiwen, JIA Jian.Effect of Ta content on mechanical properties of FGH4098 powder superalloy[J]. Powder Metallurgy Industry, 2019, 29(2): 33-38. [36] MA W B, LIU G Q, HU B F, et al.Study of metallic carbide (MC) in a Ni-Co-Cr-based powder metallurgy superalloy[J]. Metallurgical and Materials Transactions A, 2014, 45(1): 208-217. [37] 贾建, 张义文, 李新宇, 等. Zr含量对镍基粉末高温合金FGH4107平衡相和错配度的影响[J]. 粉末冶金工业, 2023, 33(2): 69-77. JIA Jian, ZHANG Yiwen, LI Xinyu, et al.Effects of Zr on the equilibrium phases and γ′/γ lattice misfit degree of nickel-based PM superalloy FGH4107[J]. Powder Metallurgy Industry, 2023, 33(2): 69-77. [38] 夏天. 微量元素Hf和Zr对FGH96合金组织和性能影响的研究[D]. 北京: 钢铁研究总院, 2013. XIA Tian.Study on the effects of trace elements Hf and Zr on the organization and properties of FGH96 alloy[D]. Beijing: Central Iron and Steel Research Institute, 2013. [39] 张义文, 韩寿波, 贾建, 等. 微量元素Hf对镍基粉末高温合金FGH97显微组织的影响[J]. 金属学报, 2015, 51(10): 1219-1226. ZHANG Yiwen, HAN Shoubo, JIA Jian, et al.Effect of microelement Hf on the micro-structure of powder metallurgy superalloy FGH97[J]. Acta Metallurgica Sinica, 2015, 51(10): 1219-1226. [40] 夏天, 张义文, 迟悦, 等. Hf和Zr含量对FGH96合金平衡相及PPB的影响[J]. 材料热处理学报, 2013, 34(8): 60-67. XIA Tian, ZHANG Yiwen, CHI Yue, et al.Effect of content of Hf and Zr on equilibrium phase and PPB in FGH96 P/M superalloy[J]. Transactions of Materials and Heat Treatment, 2013, 34(8): 60-67. [41] GABB T P, KANTZOS P T, TELESMAN J, et al.Fatigue resistance of the grain size transition zone in a dual microstructure superalloy disk[J]. International Journal of Fatigue, 2011, 33(3): 414-426. [42] XIE Z P, LI S, AN L N.A novel oscillatory pressure-assisted hot pressing for preparation of high-performance ceramics[J]. Journal of the American Ceramic Society, 2014, 97(4): 1012-1015. [43] 乔振兴, 刘增林, 张德金, 等. 等离子旋转电极雾化制备H13合金特种粉的特性表征[J]. 粉末冶金工业, 2024, 34(3): 101-105. QIAO Zhenxing, LIU Zenglin, ZHANG Dejin, et al.Characterization of H13 alloy special powders prepared by plasma rotating electrode atomization[J]. Powder Metallurgy Industry, 2024, 34(3): 101-105. [44] 张国庆, 张义文, 郑亮, 等. 航空发动机用粉末高温合金及制备技术研究进展[J]. 金属学报, 2019, 55(9): 1133-1144. ZHANG Guoqing, ZHANG Yiwen, ZHENG Liang, et al.Research progress in powder metallurgy superalloys and manufacturing technologies for aero-engine application[J]. Acta Metallurgica Sinica, 2019, 55(9): 1133-1144. [45] 杨乐彪, 任晓娜, 夏敏, 等. 电极感应熔化气雾化粉末特性及液滴尺寸影响因数的研究[J]. 稀有金属材料与工程, 2020, 49(6): 2017-2023. YANG Lebiao, REN Xiaona, XIA Min, et al.Study on powder characteristics and effect factors of droplets size during electrode induction melting gas atomization[J]. Rare Metal Materials and Engineering, 2020, 49(6): 2017-2023. [46] JIA C L, GE C C, YAN Q Z.Innovative technologies for powder metallurgy-based disk superalloys: progress and proposal[J]. Chinese Physics B, 2016, 25(2): 026103. [47] 张强, 郑亮, 许文勇, 等. 氩气雾化镍基粉末高温合金及粉末特性研究进展[J]. 粉末冶金技术, 2022, 40(5): 387-400. ZHANG Qiang, ZHENG Liang, XU Wenyong, et al.Research progress on argon atomized nickel-based powder metallurgy superalloys and powder characteristics[J]. Powder Metallurgy Technology, 2022, 40(5): 387-400. [48] BAI Q, LIN J, JIANG J, et al.A study of direct forging process for powder superalloys[J]. Materials Science and Engineering A, 2015, 621: 68-75. [49] 李楠, 陈竞炜, 曲敬龙, 等. 真空粉末锻造成型FGH95合金的流变行为和组织演变[J]. 航空材料学报, 2024, 44(2): 133-142. LI Nan, CHEN Jingwei, QU Jinglong, et al.Flow behavior and microstructure evolution of FGH95 alloy formed by vacuum powder forging[J]. Journal of Aeronautical Materials, 2024, 44(2): 133-142. [50] SUN D J, LI G Z, GUO L F, et al.Microstructure and high-temperature tensile behavior of superalloy prepared by hot oscillatory pressing[J]. Materials Characterization, 2022, 194: 112488. [51] LI G Z, SUN D J, KANG J C, et al.The effect of hot oscillatory pressing temperature on microstructure and tensile behavior of powder metallurgy superalloy[J]. Metals, 2022, 12(10): 1652. [52] 解磊鹏, 孙文瑶, 陈明辉, 等. 制备工艺对FGH4097高温合金微观组织与性能的影响[J]. 金属学报, 2022, 58(8): 992-1002. XIE Leipeng, SUN Wenyao, CHEN Minghui, et al.Effects of processing on microstructures and properties of FGH4097 superalloy[J]. Acta Metallurgica Sinica, 2022, 58(8): 992-1002. [53] QIN Z J, LI Q Y, WANG G W, et al.Microstructural characterization and prior particle boundary (PPB) of PM nickel-based superalloys by spark plasma sintering (SPS)[J]. Materials, 2023, 16(13): 4664. [54] 高峻, 罗皎, 李淼泉. 航空发动机双性能盘制造技术与机理的研究进展[J]. 航空材料学报, 2012, 32(6): 37-43. GAO Jun, LUO Jiao, LI Miaoquan.Advance in manufacture technology and mechanism of aero-engine dual property disk[J]. Journal of Aeronautical Materials, 2012, 32(6): 37-43. [55] GAYDA J, GABB T P, KANTZOS P T.The effect of dual microstructure heat treatment on an advanced nickel-base disk alloy[J]. Superalloys, 2004: 323-329. [56] 刘建涛, 陶宇, 张义文, 等. FGH96合金双性能盘的组织与力学性能[J]. 材料热处理学报, 2010, 31(5): 71-74. LIU Jiantao, TAO Yu, ZHANG Yiwen, et al.Microstructure and mechanical property of FGH96 alloy dual property disk[J]. Transactions of Materials and Heat Treatment, 2010, 31(5): 71-74. [57] 龙安平, 熊江英, 张高翔, 等. FGH4113A合金的双性能热处理组织与力学性能研究[J]. 稀有金属材料与工程, 2024, 53(4): 1042-1050. LONG Anping, XIONG Jiangying, ZHANG Gaoxiang, et al.Dual microstructure and mechanical properties of FGH4113A nicked-based superalloy[J]. Rare Metal Materials and Engineering, 2024, 53(4): 1042-1050. [58] 刘佳宾, 刘新灵, 李振. 粉末高温合金夹杂物引起疲劳裂纹萌生微观机理研究现状[J]. 材料导报, 2021, 35(S2): 385-390. LIU Jiabin, LIU Xinling, LI Zhen.Research status of micro-mechanism of fatigue crack initiation caused by inclusions in powder superalloy[J]. Materials Reports, 2021, 35(S2): 385-390. [59] 王晓峰, 杨杰, 邹金文, 等. FGH96镍基粉末高温合金氧化物夹杂的计算机断层扫描研究[J]. 粉末冶金技术, 2019, 37(4): 264-272. WANG Xiaofeng, YANG Jie, ZOU Jinwen, et al.Study on oxide inclusions of nickel-based P/M superalloy FGH96 by computed tomography technology[J]. Powder Metallurgy Technology, 2019, 37(4): 264-272. [60] 张莹, 张义文, 吕日红, 等. PREP工艺制造的镍基高温合金粉末中夹杂物[J]. 中国有色金属学报, 2017, 27(10): 2037-2045. ZHANG Ying, ZHANG Yiwen, LÜ Rihong, et al.Inclusions in Ni-base superalloy powder by PREP[J]. The Chinese Journal of Nonferrous Metals, 2017, 27(10): 2037-2045. [61] 何承群, 余泉茂, 胡本芙. FGH95合金LCF断裂寿命与夹杂特征关系的研究[J]. 金属学报, 2001, 37(3): 247-252. HE Chengqun, YU Quanmao, HU Benfu.Study of the relationship between the LCF life of FGH95 alloy and the inclusion characteristics[J]. Acta Metallurgica Sinica, 2001, 37(3): 247-252. [62] 曾燕屏, 张麦仓, 董建新, 等. 镍基粉末高温合金中夹杂物导致裂纹萌生和扩展行为的研究[J]. 材料工程, 2005(3): 10-13. ZENG Yanping, ZHANG Maicang, DONG Jianxin, et al.Study on crack initiation and propagation induced by inclusion in nickel-base P/M superalloy[J]. Journal of Materials Engineering, 2005(3): 10-13. [63] NARAGANI D, SANGID M D, SHADE P A, et al.Investigation of fatigue crack initiation from a non-metallic inclusion via high energy X-ray diffraction microscopy[J]. Acta Materialia, 2017, 137: 71-84. [64] 曾燕屏, 董建新, 张麦仓, 等. 拉伸载荷下镍基粉末高温合金中夹杂物行为[J]. 工程科学学报, 2005, 27(2): 202-204. ZENG Yanping, DONG Jianxin, ZHANG Maicang, et al.Behavior of inclusions in nickel-base P/M superalloy under tensile load[J]. Chinese Journal of Engineering, 2005, 27(2): 202-204. [65] 张丽娜, 张麦仓, 李晓, 等. P/M Rene95合金夹杂物微观力学行为观察[J]. 工程科学学报, 2002, 24(4): 432-435. ZHANG Lina, ZHANG Maicang, LI Xiao, et al.SEM in-situ observation on behavior of inclusions with different size in P/M Rene95 superalloy[J]. Chinese Journal of Engineering, 2002, 24(4): 432-435. [66] JIANG J, YANG J, ZHANG T, et al.Microstructurally sensitive crack nucleation around inclusions in powder metallurgy nickel-based superalloys[J]. Acta Materialia, 2016, 117: 333-344. [67] YI S, LI Y, MAO J X, et al.Role of inclusion clusters on fatigue crack initiation in powder metallurgy nickel-based FGH96 superalloy[J]. Journal of Materials Research and Technology, 2024, 33: 1286-1298. [68] 陈希春, 付锐, 任昊, 等. 电渣重熔连续定向凝固FGH96合金非金属夹杂物研究[J]. 中国新技术新产品, 2011(10): 1-2. CHEN Xichun, FU Rui, REN Hao, et al.Study on nonmetallic inclusions of ESR-CDS FGH96 alloy[J]. China New Technologies and Products, 2011(10): 1-2. [69] 谷雨, 赵朋, 袁艺, 等. 冶炼工艺对FGH96合金洁净度的影响[J]. 中国冶金, 2023, 33(3): 62-67. GU Yu, ZHAO Peng, YUAN Yi, et al.Effect of smelting process on cleanliness of FGH96 superalloy[J]. China Metallurgy, 2023, 33(3):62-67. [70] 杨树峰, 袁艺, 赵朋, 等. VIDP+VHCC双联生产粉末高温合金母合金的方法和粉末高温合金母合金: CN113718138B[P].2022-02-11. YANG Shufeng, YUAN Yi, ZHAO Peng, et al. VIDP+VHCC duplex production of powder metallurgy superalloy master alloy and powder metallurgy superalloy master alloy: CN113718138B[P].2022-02-11. [71] 张林嘉, 宋嘉明, 王泽钰, 等. 镍基高温合金粉末中非金属夹杂物电选工艺分析[J]. 粉末冶金工业, 2023, 33(2): 29-32. ZHANG Linjia, SONG Jiaming, WANG Zeyu, et al.Analysis of electro-separation of inclusions in Ni-based superalloy powder[J]. Powder Metallurgy Industry, 2023, 33(2): 29-32. [72] 周晓明, 王志彪, 王超渊, 等. 粉末高温合金中夹杂物的变形特征及对探伤信号的影响[J]. 铸造技术, 2021, 42(4): 252-257. ZHOU Xiaoming, WANG Zhibiao, WANG Chaoyuan, et al.Deformation characteristics of inclusions in powder metallurgy superalloy and effects on flaw detection signals[J]. Foundry Technology, 2021, 42(4): 252-257. [73] WANG X F, ZHOU X M, YANG J, et al.Research on characteristics and deformation mechanism of Al2O3 inclusions with different forming processes in powder metallurgy superalloy[J]. Materials Research Innovations, 2014, 18(S4): 438-444. [74] 王杰, 黄海亮, 周亚洲, 等. 镍基粉末高温合金中γ′相溶解行为与动力学研究进展[J]. 材料导报, 2023, 37(21): 242-250. WANG Jie, HUANG Hailiang, ZHOU Yazhou, et al.Research progress in dissolution behavior and kinetics of γ′ precipitate in nickel-based powder metallurgy superalloys[J]. Materials Reports, 2023, 37(21): 242-250. [75] 张义文, 胡本芙. 拓扑密堆μ相对含Hf的镍基粉末高温合金组织和性能的影响[J]. 金属学报, 2016, 52(4): 445-454. ZHANG Yiwen, HU Benfu.Effects of topologically close packed μ phase on microstructure and properties in powder metallurgy Ni-based superalloy with Hf[J]. Acta Metallurgica Sinica, 2016, 52(4): 445-454. [76] 郑亮, 张强, 李周, 等. 增/降氧过程对高温合金粉末表面特性和合金性能的影响: 粉末存储到脱气处理[J]. 金属学报, 2023, 59(9): 1265-1278. ZHENG Liang, ZHANG Qiang, LI Zhou, et al.Effects of oxygen increasing/decreasing processes on surface characteristics of superalloy powders and properties of their bulk alloy counterparts: powders storage and degassing[J]. Acta Metallurgica Sinica, 2023, 59(9): 1265-1278. [77] 张强, 张安琴, 王艺星, 等. 真空脱气对热等静压态粉末高温合金热加工性能的影响[J]. 材料热处理学报, 2024, 45(12): 130-139. ZHANG Qiang, ZHANG Anqin, WANG Yixing, et al.Effect of vacuum degassing on hot workability of hot isostatic pressed powder metallurgy superalloy[J]. Transactions of Materials and Heat Treatment, 2024, 45(12): 130-139. [78] 杨万鹏, 胡本芙, 刘国权, 等. 高性能镍基粉末高温合金中γ′相形态致锯齿晶界形成机理研究[J]. 材料工程, 2015, 43(6): 7-13. YANG Wanpeng, HU Benfu, LIU Guoquan, et al.Formation mechanism of serrated grain boundary caused by different morphologies of γ′ phases in a high-performance nickel-based powder metallurgy superalloy[J]. Journal of Materials Engineering, 2015, 43(6): 7-13. [79] 周亚洲. 一种新型粉末高温合金的热变形行为研究[D]. 烟台: 烟台大学, 2023. ZHOU Yazhou.Study on hot deformation behavior of a new powder nickel base superalloy[D]. Yantai: Yantai University, 2023. [80] REN X N, WANG Y, WANG Z F, et al.Properties of electrode induction melting gas atomization-and vacuum induction melting atomization-produced powders and their as-HIPed blanks[J]. Materials, 2025, 18(3): 710. [81] GUO R P, XU L, ZONG B Y, et al.Characterization of prealloyed Ti-6Al-4V powders from EIGA and PREP process and mechanical properties of HIPed powder compacts[J]. Acta Metallurgica Sinica (English Letters), 2017, 30(8): 735-744. [82] 吴嘉伦. EIGA高温合金细粉收得率与粉体流动性优化及机理研究[D]. 北京: 北京科技大学, 2023. WU Jialun.Study on the optimization and mechanism of EIGA superalloy fine powder yield and powder fluidity[D]. Beijing: University of Science and Technology Beijing, 2023. [83] 陈进. VIGA气雾化制备镍基合金粉末雾化过程的数值模拟[D]. 沈阳: 东北大学, 2020. CHEN Jin.Numerical simulation of atomization process of nickel-based alloy powders prepared by vacuum induction melting gas atomization[D]. Shenyang: Northeastern University, 2020. [84] 李少强, 孙健豪, 赖运金, 等. 金属球形粉末制备技术研究进展[J]. 铸造技术, 2025, 46(7): 626-644. LI Shaoqiang, SUN Jianhao, LAI Yunjin, et al.Research progress on the preparation technology of spherical metal powder[J]. Foundry Technology, 2025, 46(7): 626-644. [85] 周磊, 王旭青, 邹金文, 等. 一种粉末高温合金粗粉返回料的再利用方法: CN117583595A[P].2024-02-23. ZHOU Lei, WANG Xuqing, ZOU Jinwen, et al. A kind of powder metallurgy superalloy coarse powder return material reuse method: CN117583595A[P].2024-02-23. [86] 张华霞, 马国宏, 马秀萍, 等. FGH96高温合金粉末返回料净化技术研究[J]. 铸造技术, 2018, 39(10): 2173-2175. ZHANG Huaxia, MA Guohong, MA Xiuping, et al.Study on FGH96 super-alloy powder revert materials purity technology[J]. Foundry Technology, 2018, 39(10): 2173-2175. [87] 石英男, 孙少斌, 曲敬龙, 等. 粉末高温合金热挤压工艺研究进展[J]. 粉末冶金工业, 2024, 34(1): 124-133. SHI Yingnan, SUN Shaobin, QU Jinglong, et al.Research progress on hot extrusion process of P/M superalloy[J]. Powder Metallurgy Industry, 2024, 34(1): 124-133. [88] 石英男, 贾建, 张国星, 等. 一种低成本高均质大规格粉末高温合金棒材及其热挤压方法: CN117380956B[P].2024-03-12. SHI Yingnan, JIA Jian, ZHANG Guoxing, et al. A low-cost, high-homogeneity, large-size powder metallurgy superalloy rod and its hot extrusion method: CN117380956B[P].2024-03-12. |
|
|
|