|
|
Crystallization behavior of self-propagating high temperature synthesis WC powder |
GAO Yuyang1, LIU Yong1, CHEN Gang2, TANG Xiaotian2, ZHOU Chengshang1 |
1. Powder Metallurgy Research Institute, Central South University, Changsha 410083, China; 2. School of Materials Science and Engineering, Hunan University, Changsha 410082, China |
|
|
Abstract Single crystal WC powder was prepared by self-propagating high temperature synthesis (SHS) with wolframite (Fe(Mn)WO4), tungsten (WO3), calcium carbide (CaC2) and high purity aluminum powders as main raw materials. The effects of thermite addition (Fe3O4-Al mixture, n(Fe3O4):n(Al)=3:8), preheating of raw material and feeding amount on particle size and morphology characteristics of the WC powder were studied. The results show that the crystal shape of the WC powder prepared by SHS method is complete. Although the temperature of combustion system is increased with adding thermite, a large number of Fe3W3C phases are formed, resulting in a decrease in the purity of WC powder. Preheating the raw powders in the crucible can make the WC grain grow fully. The size of the WC powder becomes larger, and the WC crystal shape changes from spherical to multilateral shape. The particle size of the WC powder increases with the increase of the feeding amount of reaction material, and the shape of WC powder changes from spherical to polygonal.
|
Received: 31 May 2022
Published: 27 January 2023
|
|
|
|
|
[1] 潘锋, 刘家义, 杜占, 等. 超细碳化钨制备过程及机理研究进展[J]. 化工学报, 2021, 72(11): 5455-5467. PAN Feng, LIU Jiayi, DU Zhan, et al.Research progress on preparation process and mechanism of ultra-fine tungsten carbide[J]. Journal of chemical industry, 2021, 72(11): 5455-5467. [2] KURLOV A S, GUSEV A I.Tungsten carbides[J]. Springer Ser Mater Sci, 2013, 184(5): 34-36. [3] PRAKASH L J.Application of fine grained tungsten carbide based cemented carbides[J]. International Journal of Refractory Metals and Hard Materials, 1995, 13(5): 257-264. [4] UPADHYAYA G S.Materials science of cemented carbides—an overview[J]. Materials Design, 2001, 22(6): 483-489. [5] 伏利, 刘伟, 陈小明, 等. 超音速喷涂WC-10Co4Cr及WC- 12Co涂层的抗海水气蚀性能[J]. 粉末冶金材料科学与工程, 2020, 25(3): 234-238. FU Li, LIU Wei, CHEN Xiaoming, et al.Cavitation resistance of supersonic spray WC-10Co4Cr and WC-12Co coatings[J]. Materials Science and Engineering of Powder Metallurgy, 2020, 25(3): 234-238. [6] 刘铭哲, 李斌川, 韩庆, 等. 超细碳化钨粉末制备工艺研究进展[J]. 稀有金属与硬质合金, 2019, 47(2): 74-81. LIU Mingzhe, LI Binchuan, HAN Qing, et al.Research progress on preparation technology of ultra-fine tungsten carbide powder[J]. Rare Metals and Hard Metals, 2019, 47(2): 74-81. [7] 陈丽杰, 谢中华, 王瑞祥, 等. 氧化钨粉还原碳化机理分析及超细碳化钨粉的制备[J]. 稀有金属与硬质合金, 2018, 46(2): 11-35. CHEN Lijie, XIE Zhonghua, WANG Ruixiang, et al.Mechanism analysis of reduction and carbonization of tungsten oxide powder and preparation of ultrafine tungsten carbide powder[J]. Rare Metals and Hard Metals, 2018, 46(2): 11-35. [8] MERZHANOV A.History and recent developments in SHS[J]. Ceramics International, 1995, 21(5): 371-379. [9] BOROVINSKAYA I, GROMOV A, LEVACHOV E A, et al.Concise Encyclopedia of Self-propagating High-temperature Synthesis: History, Theory, Technology and Products[M]. Amsterdam, Netherlands: Elsevier, 2017: 385-387. [10] 左蓓璘, 刘佩进, 张维海, 等. 高温自蔓延反应合成功能材料的研究进展[J]. 含能材料, 2018, 26(6): 537-544. ZUO Beilin, LIU Peijin, ZHANG Weihai, et al.Progress in synthesis of functional materials by high temperature self-propagating reaction[J]. Energetic Materials, 2018, 26(6): 537-544. [11] BORISOV A A, DE LUCA L T, MERZHANOV A G. Self- propagating High-Temperature Synthesis of Materials[M]. New York, USA: CRC Press, 2002: 22-67. [12] ZAYTSEV A A, VERSHINNIKOV V I, KONYASHIN I, et al.Cemented carbides from WC powders obtained by the SHS method[J]. Materials Letters, 2015, 158(5): 329-332. [13] ZAYTSEV A A, BOROVINSKAYA I P, VERSHINNIKOV V I, et al.Near-nano and coarse-grain WC powders obtained by the self-propagating high-temperature synthesis and cemented carbides on their basis. Part I: structure, composition and properties of WC powders[J]. International Journal of Refractory Metals and Hard Materials, 2015, 50(5): 146-151. [14] SUBRAHMANYAM J, VIJAYAKUMAR M.Self-propagating high-temperature synthesis[J]. Journal of Materials Science & Technology, 1992, 27(23): 6249-6273. [15] TERRY C J, FRANK J D. Macrocrystalline tungsten monocarbide powder and process for producing: 4834963[P].1989-05-30. [16] MORRIS J.Macrocrystalline thermit process revealed[J]. Metal Powder Report, 1999, 54(12): 22-27. [17] SHIRIEV A A, MUKASYAN A S.Thermodynamics of SHS Processes[M]. Amsterdam, Netherlands: Elsevier, 2017: 385-387. [18] 叶大伦. 实用无机物热力学数据手册[M]. 北京: 冶金工业出版社, 1981: 1032-1056. YE Dalun.Practical Inorganic Thermodynamic Data Manual[M]. Beijing: Metallurgical Industry Press, 1981: 1032-1056. [19] JIN J, GAO R, PENG H, et al.Rapid solidification microstructure and carbide precipitation behavior in electron beam melted high-speed steel[J]. Metallurgical Materials Transactions A, 2020, 51(5): 2411-2429. [20] 王西龙, 刘雪梅, 王海滨, 等. 硬质合金中WC晶面取向分布形成的机理研究[J]. 中国体视学与图像分析, 2016, 21(1): 107-116. WANG Xilong, LIU Xuemei, WANG Haibin, et al.Study on the formation mechanism of WC crystal plane orientation distribution in cemented carbide[J]. Chinese Stereology and Image Analysis, 2016, 21(1): 107-116. |
|
|
|