|
|
Microstructure and properties of carbon-free Fe-Co-Mo high speed steel coating prepared by laser cladding |
XIONG Guo1, XIE Fengwei2, YUAN Ziren2, KANG Xiyue2, HE Yuehui2 |
1. Energy and Environmental Protection Department of Hunan Valin Xiangtan Iron and Steel Co., Ltd., Xiangtan 411101, China; 2. State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China |
|
|
Abstract Carbon-free high-speed steel coatings were prepared on 40Cr substrates by synchronous powder-feeding laser cladding technology with water atomized alloy powder as raw material. The microhardness, red hardness and tempering resistance of the coating were tested and analyzed. The effects of process parameters on the morphology and hardness of the coating were studied. The results show that, under suitable parameters, a carbon-free high-speed steel coating without macro cracks and pores was obtained on the surface of the substrate. The coating has high density and low dilution rate, and exhibits a good metallurgical bond with the substrate. The microhardness (HV0.2) of the coating in the cladding state is 700, and the coating hardness (HV0.2) is significantly increased to 900 after aging at 600 ℃ for 1 h. After aging at 600 ℃for 1 h for 4 times, the coating hardness (HV0.2) remains at 800. In addition, after a long time tempering at 600 ℃ for 30 h, the coating can still maintain a hardness (HV0.2) of 750, which has better tempering resistance than conventional high-speed steel ASP2030 and hot work die steel H13.
|
Received: 16 December 2020
Published: 22 March 2021
|
|
|
|
|
[1] KÖSTERW, TONNW. Das System Eisen-Kobalt-Molybdän[J]. Archiv Für Das Eisenhüttenwesen, 1932, 5(12): 627-630. [2] GELLER J.Instrumentalniye staly[J]. Metallurgia Publ, Moscow 1983, 3(4): 56-62. [3] DANNIHGER H, HAROLD C, GIERL C, et al.Powder metallurgy manufacturing of carbon-free precipitation hardened high seep steel[J]. Acta Physica Polonica A, 2010, 117(5): 825-830. [4] DANNINGER H, ROUZBAHANI F, HAROLD C, et al.Heat treatment and properties of precipitation hardened carbon-free PM tool steels[J]. Powder Metallurgy Progress, 2005, 5(2): 92-103. [5] Böhler Uddeholm, Inc. Data Sheet “MC-90 Intermet”[EB/OL]. [2020.12.30]. http://www.bohler-uddeholm.co.za/116. Php. [6] 解志欣, 孙文磊. 激光熔覆技术制备梯度涂层的研究现状[J/OL]. 热加工工艺, 2020, 34(11): 1-7[2020-12-31]. https:// doi.org/10.14158/j.cnki.1001-3814.20192781. XIE Zhixin, SUN Wenlei. The research status of laser cladding technology to prepare gradient coatings[J/OL]. Heat Processing Technology, 2020, 34(11): 1-7[2020-12-31]. https://doi.org/10. 14158/j.cnki.1001-3814.20192781. [7] KANG Q, YONG Y, HU G F, et al.Thermal expansion control of composite coatings on 42CrMo by laser cladding[J]. Surface & Coatings Technology, 2020, 397(12): 23-30. [8] 张津超, 石世宏, 龚燕琪, 等. 激光熔覆技术研究进展[J]. 表面技术, 2020, 49(10): 1-11. ZHANG Jinchao, SHI Shihong, GONG Yanqi, et al.Research progress of laser cladding technology[J]. Surface Technology, 2020, 49(10): 1-11. [9] MALACHOWSKA A, PACZKOWSKI G, LAMPKE T, et al.Characterization of FeP-based metallic glass coatings prepared with laser cladding[J]. Surface & Coatings Technology, 2021, 405(12): 35-44. [10] BARTKOWSKI D, BARTKOWSKA A, JURČI P. Laser cladding process of Fe/WC metal matrix composite coatings on low carbon steel using Yb: YAG disk laser[J]. Optics and Laser Technology, 2021, 136(15): 125-136. [11] 王招阳, 林健, 雷永平, 等. 激光熔覆制备Stellite6涂层的组织与性能[J]. 激光与红外, 2020, 50(10): 1172-1177. WANG Zhaoyang, LIN Jian, LEI Yongping, et al.Microstructure and properties of Stellite6 coating prepared by laser cladding[J]. Laser and Infrared, 2020, 50(10): 1172-1177. [12] 曹金龙, 杨学锋, 王守仁, 等. 45钢表面激光熔覆Ni60-TiC陶瓷涂层的耐磨耐蚀性能[J]. 稀有金属材料与工程, 2020, 49(2): 611-617. CAO Jinlong, YANG Xuefeng, WANG Shouren, et al.Wear and corrosion resistance of laser cladding Ni60-TiC ceramic coating on 45 steel surface[J]. Rare Metal Materials and Engineering, 2020, 49(2): 611-617. [13] ZHU Z, LI J, PENG Y, et al.In-situ synthesized novel eyeball-like Al2O3/TiC composite ceramics reinforced Fe-based alloy coating produced by laser cladding[J]. Surface and Coatings Technology, 2020, 391: 125-135. [14] ZHANG M, WANG X, QU K, et al.Effect of rare earth oxide on microstructure and high temperature oxidation properties of laser cladding coatings on 5CrNiMo die steel substrate[J]. Optics & Laser Technology, 2019, 119: 105-115. [15] 任嘉. 球墨铸铁轧辊激光熔覆表面修复的研究[D]. 上海: 上海交通大学, 2019. REN Jia.Research on laser cladding surface repair of ductile iron roll[D]. Shanghai: Shanghai Jiaotong University, 2019. [16] 丁洁. 激光熔覆Ni-Cr-Mo合金涂层组织与性能的研究[D]. 苏州: 江苏大学, 2019. DING Jie.Research on the structure and properties of laser cladding Ni-Cr-Mo alloy coating[D]. Suzhou: Jiangsu University, 2019. [17] LI Z, WEI M, XIAO K, et al.Microhardness and wear resistance of Al2O3-TiB2-TiC ceramic coatings on carbon steel fabricated by laser cladding[J]. Ceramics International, 2018, 45: 136-145. [18] ZHU Z, LI J, PENG Y, et al.In-situ synthesized novel eyeball- like Al2O3/TiC composite ceramics reinforced Fe-based alloy coating produced by laser cladding[J]. Surface and Coatings Technology, 2020, 391: 243-252. [19] 彭雄. 激光熔覆含3%Y2O3中碳铁基耐磨耐蚀合金涂层的组织调控及改性研究[D]. 兰州: 兰州理工大学, 2020. PENG Xiong.Study on microstructure control and modification of laser cladding medium carbon Fe based wear resistant and corrosion resistant alloy coating containing 3%Y2O3[D]. Lanzhou: Lanzhou University of Technology, 2020. [20] SHU D, DAI S C, SUNJ C, et al.Research on optimization of laser cladding process parameters based on orthogonal experimental method[J]. Key Engineering Materials, 2020, 54: 47-37. [21] 周芳. 激光熔覆高熔点高熵合金涂层组织结构演化及其抗高温软化行为[D]. 贵阳: 贵州大学, 2018. ZHOU Fang.Microstructure evolution and high temperature softening resistance of laser cladding high melting point and high entropy alloy coating[D]. Guiyang: Guizhou University, 2018. [22] 陈翔, 张德强, 孙文强, 等. M2高速钢刀具表面激光熔覆WC/Co涂层的组织与红硬性[J]. 表面技术, 2019, 48(11): 236-243, 251. CHEN Xiang, ZHANG Deqiang, SUN Wenqiang, et al.Microstructure and red hardness of laser cladding WC/Co coating on the surface of M2 high-speed steel tools[J]. Surface Technology, 2019, 48(11): 236-243, 251. |
|
|
|