|
|
Research on die forging process of powder metallurgy TiAl alloy blade based on numerical simulation |
ZHANG Qiang1, LI Huizhong1,2,3, LIANG Xiaopeng1,2,3, TAO Hui1 |
1. School of Materials Science and Engineering, Central South University, Changsha 410083, China; 2. State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China; 3. Key Laboratory of Nonferrous Metal Materials Science and Engineering, Ministry of Education, Central South University, Changsha 410083, China |
|
|
Abstract The die forging process of powder metallurgy Ti-47Al-2Cr-2Nb-0.2W (mole fraction, %) alloy blade was studied by the way of numerical simulation using Deform-3D finite element software. The effects of preheating temperature and upper die speed on the distribution of effective strain field and effective stress field, as well as the load of upper die were analyzed. The results show that with the increase of the preheating temperature and the decrease of the upper die speed, the distribution of the effective strain field and the effective stress field of the blade forgings becomes more uniform, which is beneficial to improve the uniformity of the blade microstructure. During the die forging process, due to the increase of TiAl alloy work hardening and the friction between the forging blank and the die, the load continues to increase, and the increase in the preheating temperature and the decrease of the upper die speed can significantly reduce the load of upper die. The optimal deformation process parameters of die forging for powder metallurgy TiAl alloy blade are preheating temperature of 1 200 ℃ and upper die speed of 0.5 mm/s.
|
Received: 16 December 2020
Published: 22 March 2021
|
|
|
|
|
[1] 曾武, 李慧中, 刘咏, 等. Ti-47Al-2Cr-2Nb-0.2W合金微观组织对其阻尼性能的影响[J]. 粉末冶金材料科学与工程, 2014, 19(3): 451-458. ZENG Wu, LI Huizhong, LIU Yong, et al.Effect of the microstructures of Ti-47Al-2Cr-2Nb-0.2W alloy on damping performance[J]. Materials Science and Engineering of Powder Metallurgy, 2014, 19(3): 451-458. [2] APPEL F, PAUL J D H, OEHRING M. Gamma Titanium Aluminide Alloys Science and Technology[M]. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2011: 1-2. [3] 郑君姿, 张来启, 侯永明, 等. β-γ高Nb-TiAl合金准等温锻造过程模拟[J]. 金属学报, 2013, 49(11): 1439-1444. ZHENG Junzi, ZHANG Laiqi, HOU Yongming, et al.Quasi isothermal forging simulation of β-γ TiAl alloy containing high content of Nb[J]. Acta Metallurgica Sinica, 2013, 49(11): 1439-1444. [4] BEWLAY B P, NAG S, SUZUKI A, et al.TiAl alloys in commercial aircraft engines[J]. Materials at High Temperature, 2016, 33(4): 549-559. [5] 王辉, 汤慧萍, 刘咏, 等. 铸造TiAl基合金的热变形行为及加工图[J]. 粉末冶金材料科学与工程, 2012, 17(4): 401-407. WANG Hui, TANG Huiping, LIU Yong, et al.Hot deformation behaviors and processing maps of as-cast TiAl based alloy[J]. Materials Science and Engineering of Powder Metallurgy, 2012, 17(4): 401-407. [6] 魏忠伟, 李慧中, 梁霄鹏, 等. 轧制变形量对Ti-45Al-7Nb- 0.3W合金组织与性能的影响[J]. 粉末冶金材料科学与工程, 2016, 21(5): 690-695. WEI Zhongwei, LI Huizhong, LIANG Xiaopeng, et al.Effect of rolling deformation on microstructure and mechanical property of Ti-45Al-7Nb-0.3W alloy[J]. Materials Science and Engineering of Powder Metallurgy, 2016, 21(5): 690-695. [7] WANG X P, XU W C, XU P, et al.High Nb-TiAl intermetallic blades fabricated by isothermal die forging process at low temperature[J]. Metals, 2020, 10(6): 757-771. [8] 徐鹏. 高Nb-TiAl合金叶片等温模锻技术基础研究[D]. 哈尔滨: 哈尔滨工业大学, 2015. XU Peng.Fundamental research on isothermal die forging of high Nb-TiAl alloy[D]. Harbin: Harbin Institute of Technology, 2015. [9] 卢斌, 刘咏, 邱从章. TiAl基合金方坯可锻性数值模拟[J]. 粉末冶金材料科学与工程, 2012, 17(1): 83-88. LU Bin, LIU Yong, QIU Congzhang.Numerical simulation on forge ability of TiAl alloy square billet[J]. Materials Science and Engineering of Powder Metallurgy, 2012, 17(1): 83-88. [10] 辛景景, 张来启, 马向玲, 等. 高Nb-TiAl合金叶片锻造模拟[J]. 工程科学学报, 2016, 38(4): 532-537. XIN Jingjing, ZHANG Laiqi, MA Xiangling, et al.Forging simulation of high Nb-TiAl alloy blades[J]. Chinese Journal of Engineering, 2016, 38(4): 532-537. [11] LI H Z, LONG Y, LIANG X P, et al.Effects of multiaxial forging on microstructure and high temperature mechanical properties of powder metallurgy Ti-45Al-7Nb-0.3W alloy[J]. Intermetallics, 2020, 116: 106647. [12] 付明杰, 张继. γ-TiAl合金叶片锻造过程的三维有限元模拟[J]. 热加工工艺, 2010, 39(19): 118-120. FU Mingjie, ZHANG Ji.3-D FE simulation on forging process for γ-TiAl alloy blade[J]. Casting, Hot Working Technology, 2010, 39(19): 118-120. [13] JANSCHEK P.Wrought TiAl blades[J]. Materials Today: Proceedings, 2015, 2(1): S92-S97. [14] 李慧中, 刘超, 梁霄鹏, 等. 大直径AZ80镁合金热模锻有限元分析[J]. 中南大学学报(自然科学版), 2018, 49(1): 39-46. LI Huizhong, LIU Chao, LIANG Xiaopeng, et al.Finite element analysis of hot die forging process for large size AZ80 magnesium alloy[J]. Journal of Central South University (Science and Technology), 2018, 49(1): 39-46. [15] 王华. TC4-DT钛合金模锻件组织和性能的控制研究[J]. 热加工工艺, 2017, 46(13): 171-173. WANG Hua.Control study on microstructure and properties of TC4-DT titanium alloy die forgings[J]. Hot Working Technology, 2017, 46(13): 171-173. [16] 许周礼, 陈天赋, 张运军, 等. 6082铝合金转向节模锻工艺及变形规律[J]. 锻压技术, 2019, 44(6): 17-23. XU Zhouli, CHEN Tianfu, ZHANG Yunjun, et al.Die forging technology and deformation law of steering knuckle for 6082 aluminum alloy[J]. Forging & Stamping Technology, 2019, 44(6): 17-23. [17] 卢斌, 刘咏, 李建波. TiAl合金包套锻造的数值模拟[J]. 粉末冶金材料科学与工程, 2012, 17(3): 304-308. LU Bin, LIU Yong, LI Jianbo.Numeriacal simulation of canned forging of TiAl alloy[J]. Materials Science and Engineering of Powder Metallurgy, 2012, 17(3): 304-308. [18] 姜晓冬, 张洋, 程亮, 等. TiAl合金板材包套轧制过程工艺模拟与优化[J]. 塑性工程学报, 2018, 25(2): 154-160. JIANG Xiaodong, ZHANG Yang, CHENG Liang, et al.Numerical simulation and optimization of canned rolling process of TiAl alloy plates[J]. Journal of Plasticity Engineering, 2018, 25(2): 154-160. [19] 梁霄鹏. 粉末冶金TiAl基合金板材轧制及组织性能研究[D]. 长沙: 中南大学, 2014. LIANG Xiaopeng.Investigation on rolling, microstructure and mechanical properties of powder metallurgy TiAl alloy sheet[D]. Changsha: Central South University, 2014. [20] 陈焕良, 王彬, 吴道祥, 等. 基于数值模拟的某直升机动环模锻成形工艺研究[J]. 铝加工, 2019(6): 47-51. CHEN Huanliang, WANG Bin, WU Daoxiang, et al.Research on die forging process of a helicopter moving ring based on numerical simulation[J]. Aluminium Fabrication, 2019(6): 47-51. [21] 刘超. AZ80镁合金热模锻过程有限元模拟及实验研究[D]. 长沙: 中南大学, 2016. LIU Chao.Finite element simulation and experimental study on hot die forging process of AZ80 magnesium alloy[D]. Changsha: Central South University, 2016. |
|
|
|