|
|
Effects of Al2O3 content on microstructure and properties of Al2O3/Cu composite materials prepared by spark plasma sintering |
ZHANG Yanglin1,2, LUO Zigui1,2, HU Xiaoming1,2, FENG Bo1,2, LI Rusong1,2, FAN Xi’an1,2 |
1. The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China; 2. Key Laboratory for Ferrous Metallurgy and Resources Utilization of Ministry of Education,Wuhan University of Science and Technology, Wuhan 430081, China |
|
|
Abstract Al2O3/Cu composite materials, with micron Cu powders as matrix phase and nano Al2O3 particles as insulating phase were prepared by mechanical ball milling combined with spark plasma sintering. The effects of Al2O3 content on the microstructure, resistivity and thermal conductivity of the Al2O3/Cu composite materials were investigated. The results show that the Al2O3/Cu composite materials are core-shell structure. With the increase of Al2O3 content, the covering effect of the Al2O3 coating on the copper substrate is gradually enhanced. When w(Al2O3) is 5%, the thermal conductivity of the Al2O3/Cu composites is relatively high, which is 85.92 W/(m·K), but the resistivity is relatively low (12.6 mΩ·cm). When w(Al2O3) increases to 15%, the density of the Al2O3/Cu composites decreases to 6.69 g/cm3 and the porosity is higher. But the resistivity significantly increases to 2.09×108 mΩ·cm, which is about 1011 times of Cu and the thermal conductivity is 7.6 W/(m·K), which is obviously higher than that of the traditional metal substrate.
|
Received: 06 November 2020
Published: 22 March 2021
|
|
|
|
|
Cite this article: |
ZHANG Yanglin,LUO Zigui,HU Xiaoming, et al. Effects of Al2O3 content on microstructure and properties of Al2O3/Cu composite materials prepared by spark plasma sintering[J]. Materials Science and Engineering of Powder Metallurgy, 2021, 26(1): 9-14.
|
|
|
|
URL: |
http://pmbjb.csu.edu.cn/EN/ OR http://pmbjb.csu.edu.cn/EN/Y2021/V26/I1/9 |
[1] LI Q, CHEN L, GADINSKI M R, et al.Flexible high- temperature dielectric materials from polymer nanocomposites[J]. Nature, 2015, 523(7562): 576-584. [2] 李冰, 张晓伟. 环氧树脂基导热复合材料的研究进展[J]. 中国胶粘剂, 2008, 17(1): 60-62. LI Bing, ZHANG Xiaowei.Research progress of the epoxy resin based thermal conductive composite[J]. China Adhesives, 2008, 17(1): 60-62. [3] 孔凡旺, 苏民社, 杨中强. 金属基板用高导热胶膜的研究[J].覆铜板资讯, 2010, 14(5): 12-16, 21. KONG Fanwang, SU Minshe, YANG Zhongqiang.Study on the high thermal conductive adhesive film used for metal based copper clad laminate[J]. Information Journal of Copper Clad Laminate, 2010, 14(5): 12-16, 21. [4] SUN J L, LIU C X, ZHANG X H, et al.Effect of diopside addition on sintering and mechanical properties of alumina[J]. Ceramics International, 2009, 35(4): 1321-1325. [5] IRENEUSE P, SOLIWODA K.The effect of ceramic nanoparticles on tribological properties of alumina sol-gel thin coatings[J]. Ceramics International, 2010, 36(1): 47-54. [6] 曹烨. AlN基板氧化及直接敷铜工艺的基础研究[D]. 合肥: 合肥工业大学, 2018. CAO Ye.Fundamental research on oxidation of AlN substrates and direct bonding copper process[D]. Hefei: Hefei University of Technology, 2018. [7] 井敏. 金属直接敷接陶瓷基板制备方法与性能研究[D]. 南京:南京航空航天大学, 2009. JING Min.Research on method and properties of directing bonded metal on Al2O3 ceramic substrates[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2009. [8] 钱斐. 大功率LED用Al2O3陶瓷封装基板的金属化和致密化研究[D]. 南京: 南京航空航天大学, 2014. QIAIN Fei.Study on metallization and densification of Al2O3 ceramic packaging substrate for high-power LED[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2014. [9] 吴朝晖, 程浩, 章军, 等. 大功率LED封装基板技术与发展现状[J]. 半导体光电, 2016, 37(1): 1-6. WU Zhaohui, CHENG Hao, ZHANG Jun, et al.Technologies and development status of heat spreader for high—power LED packaging[J]. Semiconductor Optoelectronics, 2016, 37(1): 1-6. [10] 龚莹. 日本覆铜板企业发展的新动向[J]. 覆铜板资讯, 2017, 21(1): 23-29. GONG Ying.New trends in the development of copper clad laminate enterprises in Japan[J]. Information Journal of Copper Clad Laminate, 2017, 21(1): 23-29. [11] HAUTCOEUR D, LORGOUILOUX Y, LERICHE A, et al.Thermal conductivity of ceramic/metal composites from preforms produced by freeze casting[J]. Ceramics International, 2016, 42(12): 14077-14085. [12] WEJRZANOWSKI T, GRYBCZUK M, CHMIELEWSKI M, et al.Thermal conductivity of metal-graphene composites[J]. Materials & Design, 2016, 99(11): 163-173. [13] 祝大同. 高导热性PCB基板材料的新发展(一)[J]. 覆铜板资讯, 2012, 16(3): 19-25. ZHU Datong.New development of high thermal conductivity PCB base material (1)[J]. Information Journal of Copper Clad Laminate, 2012, 16(3): 19-25. [14] FENG D, SHI C X, LIU Z G.Introduction to materials science- an integrated approach[J]. China Particuology, 2003, 24(8): 183. [15] 汤文明, 丁厚福, 郑治祥. Al/Al2O3陶瓷基复合材料的研究[J].机械工程材料, 1995, 19(6): 38-40. TANG Wenming, DING Houfu, ZHENG ZHixiang.Study on Al/Al2O3 ceramic matrix composite[J]. Materials for Mechanical Engineering, 1995, 19(6): 38-40. [16] RODRIGUEZ-SUAREZ T, BARTOLOMÉ J F, SMIRNOV A, et al.Electroconductive alumina-TiC-Ni nanocomposites obtained by spark plasma sintering[J]. Ceramics International, 2011, 37(5): 1631-1636. [17] TAI W P, KIM Y S, KIM J G.Fabrication and magnetic properties of Al2O3/Co nanocomposites[J]. Materials Chemistry and Physics, 2003, 82(2): 396-400. [18] 王海龙. SiC(Cu)/Al金属陶瓷复合材料的研究[D]. 郑州: 郑州大学, 2004. WANG Hailong.A study on SiC(Cu)/Al cermet composites[D]. Zhengzhou: Zhengzhou University, 2004. [19] CURRAN J A, CLYNE T W.Thermo-physical properties of plasma electrolytic oxide coatings on aluminium[J]. Surface and Coatings Technology, 2005, 199(2/3): 168-176. [20] 孔祥麟. 铝基(芯)覆铜箔板[J]. 印制电路信息, 2000, 8(3): 18-20. KONG Xianglin.Aluminum based core copper clad laminate[J]. Printed Circuit Information, 2000, 8(3): 18-20. |
|
|
|