|
|
Research progress of anti-thermal insulation materials |
HAN Qingzhuang1, XIANG Yang1, PENG Zhihang1, FENG Jian1, LI Liangjun1, WEN Jin2, LIU Ping3 |
1. College of Aerospace Science and Engineering, National University of Defense Technology, Changsha 410073, China; 2. Hunan Provincial Key Laboratory of Fine Ceramics and Powder Materials, Hunan University of Humanities, Science and Technology, Loudi 417000, China; 3. Xinxing Electronic Ceramics Co., Ltd, Loudi 417600, China |
|
|
Abstract In the harsh service environment, spacecraft must withstand long-term exposure to aerobic environments, extreme aerodynamic heating, high temperatures, and high pressures. Thermal protection materials show excellent thermal insulation, protection, compression resistance, and impact resistance under the dual action of high temperature and strong airflow, and can maintain stable chemical and physical characteristics. As an anti-thermal insulation materials, its low thermal conductivity can significantly reduce heat transfer while retaining the necessary mechanical properties, which has important application value in the aerospace field, and can ensure the stable operation of internal equipment in high temperature environment. This paper systematically discusses the basic principles and key properties of two typical anti-thermal insulation materials (ceramic thermal protection materials and metal thermal protection materials), analyzes their preparation technology and practical applications, summarizes the existing main problems, and puts forward the future development direction, providing a new perspective and reference for the research in this field.
|
Received: 12 November 2024
Published: 15 April 2025
|
|
|
|
|
[1] UYANNA O, NAJAFI H.Thermal protection systems for space vehicles: a review on technology development, current challenges and future prospects[J]. Acta Astronautica, 2020, 176: 341-356. [2] 周松, 吴振强, 付延涛, 等. 刚性陶瓷瓦热防护结构力学性能及疲劳寿命研究进展[J]. 强度与环境, 2022, 49(6): 11-17. ZHOU Song, WU Zhenqiang, FU Yantao, et al.Research progress on mechanical properties and fatigue life of rigid ceramic tile thermal protection structure[J]. Structure & Environment Engineering, 2022, 49(6): 11-17. [3] 王佳为, 郑振荣, 毕月姣. 飞行器热防护材料的研究现状与发展趋势[J]. 化工新型材料, 2020, 48(11): 15-19. WANG Jiawei, ZHENG Zhenrong, BI Yuejiao.Research status and development trend of aircraft thermal protection material[J]. New Chemical Materials, 2020, 48(11): 15-19. [4] 谢永旺, 夏雨, 许学伟, 等. 航天飞行器热防护系统研究概况及其发展趋势[J]. 空天技术, 2022(4): 73-86. XIE Yongwang, XIA Yu, XU Xuewei, et al.Research status of thermal protection system for spacecraft and its development trend[J]. Aerospace Technology, 2022(4): 73-86. [5] 苟建军, 胡嘉欣, 常越, 等. 高超声速飞行器热管理关键技术及研发进展[J]. 科技导报, 2020, 38(12): 103-108. GOU Jianjun, HU Jiaxin, CHANG Yue, et al.Research progress of thermal management technologies for hypersonic flight vehicles[J]. Science & Technology Review, 2020, 38(12): 103-108. [6] 李夏菲. 防隔热一体化C/C-SiCO多孔陶瓷复合材料的制备与性能研究[D]. 长沙: 国防科技大学, 2019. LI Xiafei.Preparation and properties of porous C/C-SiCO ceramic composite for thermal protection and insulation[D]. Changsha: National University of Defense Technology, 2019. [7] 薛云嘉, 刘家臣. 柔性纤维毡的制备及弹性与隔热性能研究[J]. 材料导报, 2023, 37(3): 251-256. XUE Yunjia, LIU Jiachen.Preparation and elasticity & thermal insulation properties of flexible fiber blankets[J]. Materials Reports, 2023, 37(3): 251-256. [8] MITCHELL D, TILEY J.History and state of the art in advanced thermal protection systems: ORNL/SPR-2024/3455[R]. Washington: U.S. Department of Energy, 2024. [9] CUCE E, CUCE P M, WOOD C J, et al.Toward aerogel based thermal superinsulation in buildings: a comprehensive review[J]. Renewable and Sustainable Energy Reviews, 2014, 34: 273-299. [10] 黄鑫, 张昭环, 武旺旺, 等. 陶瓷纤维制备技术的研究进展[J]. 合成纤维工业, 2024, 47(2): 70-77. HUANG Xin, ZHANG Zhaohuan, WU Wangwang, et al.Research progress in ceramic fiber preparation technology[J]. China Synthetic Fiber Industry, 2024, 47(2): 70-77. [11] 兰志丹, 任伟敏, 安楠, 等. 陶瓷纤维隔热瓦及其高发射涂层的研究进展[J]. 硅酸盐通报, 2023, 42(12): 4465-4474. LAN Zhidan, REN Weimin, AN Nan, et al.Research progress of ceramic fiber insulation tiles and its high emissivity coating[J]. Bulletin of the Chinese Ceramic Society, 2023, 42(12): 4465-4474. [12] 刘磊春, 史胜, 许海建, 等. 航天飞行器用高发射率红外辐射涂层的制备及性能研究[J]. 涂料工业, 2023, 53(8): 8-13. LIU Leichun, SHI Sheng, XU Haijian, et al.Preparation and properties of high-temperature resistant infrared radiant coating with high emissivity for spacecraft[J]. Paint & Coatings Industry, 2023, 53(8): 8-13. [13] 孔斌, 杨家勇, 王曼, 等. 应变隔离垫高温力学性能试验及应力分布规律[J]. 西北工业大学学报, 2018, 36(6): 1162-1167. KONG Bin, YANG Jiayong, WANG Man, et al.Experiments on high temperature mechanical properties and stress distribution laws on strain isolation pad[J]. Journal of Northwestern Polytechnical University, 2018, 36(6): 1162-1167. [14] 罗萌, 向阳, 彭志航, 等. 纤维多孔陶瓷的研究进展[J]. 材料工程, 2022, 50(11): 63-72. LUO Meng, XIANG Yang, PENG Zhihang, et al.Research progress of fibrous porous ceramic[J]. Journal of Materials Engineering, 2022, 50(11): 63-72. [15] REYNIER P.Survey of high-enthalpy shock facilities in the perspective of radiation and chemical kinetics investigations[J]. Progress in Aerospace Sciences, 2016, 85: 1-32. [16] KENION T, YANG N, XU C Y.Dielectric and mechanical properties of hypersonic radome materials and metamaterial design: a review[J]. Journal of the European Ceramic Society, 2022, 42(1): 1-17. [17] 郭金玉, 谢呵瀚, 杨小乐, 等. 凝胶3D打印制备细晶氧化铝陶瓷研究[J]. 硅酸盐通报, 2021, 40(6): 1927-1936. GUO Jinyu, XIE Hehan, YANG Xiaole, et al.Preparation of fine-grained alumina ceramics by gel 3D printing[J]. Bulletin of the Chinese Ceramic Society, 2021, 40(6): 1927-1936. [18] WANG L K, FENG J Z, LUO Y, et al.Versatile thermal-solidifying direct-write assembly towards heat-resistant 3D-printed ceramic aerogels for thermal insulation[J]. Small Methods, 2022, 6(5): 2200045. [19] MARTIN H T.Assessment of the performance of ablative insulators under realistic solid rocket motor operating conditions[D]. Commonwealth of Pennsylvania: The Pennsylvania State University, 2013. [20] VOLFKOVICH Y M, FILIPPOV A N, BAGOTSKY V S.Structural Properties of Porous Materials and Powders Used in Different Fields of Science and Technology[M]. London: Springer London, 2014. [21] TANG Y X, XUE Z H, ZHOU G H, et al.Fabrication of high thermal conductivity aluminum nitride ceramics via digital light processing 3D printing[J]. Materials, 2024, 17(9): 2010. [22] 陈思安, 周青, 李广德, 等. 热防护系统: 高超声速飞行器的“消防服”[J]. 科技传播, 2019, 11(20): 128-130. CHEN Sian, ZHOU Qing, LI Guangde, et al.Thermal protection system: “fire suit” for hypersonic vehicle[J]. Public Communication of Science & Technology, 2019, 11(20): 128-130. [23] 马远洋, 母刚, 张国琛, 等. 陶瓷板太阳能集热器保温隔热设计及养殖水体升温试验[J]. 大连海洋大学学报, 2019, 34(3): 436-443. MA Yuanyang, MU Gang, ZHANG Guochen, et al.Thermal insulation and heating efficiency of aquaculture water of a ceramic solar panel[J]. Journal of Dalian Ocean University, 2019, 34(3): 436-443. [24] 周长灵, 徐鸿照, 朱杉, 等. 盖板式热防护系统研究现状及发展趋势[J]. 现代技术陶瓷, 2016, 37(3): 220-226. ZHOU Changling, XU Hongzhao, ZHU Shan, et al.Research status and development of generic shingle thermal protection system[J]. Advanced Ceramics, 2016, 37(3): 220-226. [25] 周印佳, 张志贤. 航天器可重复使用热防护技术研究进展与应用[J]. 航天返回与遥感, 2019, 40(5): 27-40. ZHOU Yinjia, ZHANG Zhixian.Research progress and applications of reusable thermal protection technology for spacecraft[J]. Spacecraft Recovery & Remote Sensing, 2019, 40(5): 27-40. [26] OLSON N.Bringing the heat: thermal protection systems for low earth orbit transportation and lunar exploration[C]. California: University of California, 2024. [27] NEMO L.Star power! How glass and ceramics push us deeper into space[J]. American Ceramic Society Bulletin, 2022, 101(9): 19-32. [28] 李广德, 张长瑞, 胡海峰, 等. 盖板式陶瓷热防护系统的传热性能优化[J]. 国防科技大学学报, 2014, 36(5): 143-148. LI Guangde, ZHANG Changrui, HU Haifeng, et al.Optimization study of heat transfer properties for generic shingle ceramic thermal protection system[J]. Journal of National University of Defense Technology, 2014, 36(5): 143-148. [29] 韩杰才, 梁军, 王超, 等. 高超声速飞行器两类典型防热材料的性能表征与评价[J]. 力学进展, 2009, 39(6): 695-715. HAN Jiecai, LIANG Jun, WANG Chao, et al.Material characterization and behavior evaluation of two typical thermal protection materials for hypersonic aircrafts[J]. Advances in Mechanics, 2009, 39(6): 695-715. [30] FU G Y, WEI L Q, ZHANG X M, et al.A high-silicon anti-oxidation coating for carbon steel at high temperature[J]. Surface and Coatings Technology, 2017, 310: 166-172. [31] 向阳, 曹峰, 彭志航. 一种耐高温防隔热三明治结构陶瓷基复合材料及制备方法: CN202011290333.4[P]. 2020-12-18. XIANG Yang, CAO Feng, PENG Zhihang. A ceramic matrix composite material with high temperature resistance and heat insulation sandwich structure and its preparation method: CN202011290333.4[P]. 2020-12-18. [32] NASER M Z, THAVARAJAH P.Ceramic tiles as sustainable, functional and insulating materials to mitigate fire damage[J]. Advances in Applied Ceramics, 2021, 120(4): 227-239. [33] LI D T, WEI X H, GAO Y R, et al.Investigations on tensile mechanical properties of rigid insulation tile materials at elevated temperatures based on digital image correlation algorithm[J]. Construction and Building Materials, 2024, 413: 134925. [34] KRENKEL W.Ceramic Matrix Composites: Fiber Reinforced Ceramics and Their Applications[M]. New York: John Wiley & Sons, 2008. [35] VENKATARAMAN M, MISHRA R, MILITKY J.Comparative analysis of high performance thermal insulation materials[J]. Journal of Textile Engineering & Fashion Technology, 2017, 2(3): 401-409. [36] 鲍泽斌, 蒋成洋, 朱圣龙, 等. 高温防护金属涂层的发展及活性元素效应[J]. 航空材料学报, 2018, 38(2): 21-31. BAO Zebin, JIANG Chengyang, ZHU Shenglong, et al.High temperature protective bond coats: development and effect of reactive element[J]. Journal of Aeronautical Materials, 2018, 38(2): 21-31. [37] 李旭, 彭小燕, 段雨露, 等. 工业纯钛的高温热氧化行为[J]. 中国有色金属学报, 2013, 23(8): 2190-2199. LI Xu, Peng Xiaoyan, Duan Yulu, et al.Thermal oxidation behavior of industrial pure titanium at high temperature[J]. The Chinese Journal of Nonferrous Metals, 2013, 23(8): 2190-2199. [38] 王冰, 相志磊, 周宗熠, 等. 耐600 ℃及以上高温钛合金研究进展[J]. 钢铁钒钛, 2024, 45(2): 42-50. WANG Bing, XIANG Zhilei, ZHOU Zongyi, et al.Research status and prospect of titanium alloys resistant to high temperature of 600 ℃ and above[J]. Iron Steel Vanadium Titanium, 2024, 45(2): 42-50. [39] 丁超. 粉末冶金Ti600合金组织和性能的研究[D]. 沈阳: 沈阳工业大学, 2019. DING Chao.Microstructures and properties of powder metallurgy Ti600 alloy[D]. Shenyang: Shenyang University of Technology, 2019. [40] GULERYUZ H, CIMENOGLU H.Oxidation of Ti-6A1-4V alloy[J]. Journal of Alloys and Compounds, 2009, 472(1/2): 241-246. [41] 冉隆城, 杨峰, 刘静, 等. Ti40合金的高温氧化动力学研究[J]. 材料保护, 2018, 51(5): 48-53. RAN Longcheng, YANG Feng, LIU Jing, et al.Study on high temperature oxidation kinetics of Ti40 alloy[J]. Materials Protection, 2018, 51(5): 48-53. [42] 刘俊, 刘艳, 徐春梅, 等. 一种Ti3Al基高温合金的氧化行为研究[J]. 硅酸盐通报, 2011, 30(4): 982-987. LIU Jun, LIU Yan, XU Chunmei, et al.Investigation on the oxidation behavior of a Ti3Al based superalloy[J]. Bulletin of the Chinese Ceramic Society, 2011, 30(4): 982-987. [43] 刘艳明, 贾新碌, 张依偲, 等. 钛及钛铝合金的高温氧化行为与防护[J]. 中国材料进展, 2023, 42(9): 699-721. LIU Yanming, JIA Xinlu, ZHANG Yicai, et al.High temperature oxidation behaviors and protection of Ti-based and TiAl-based alloys[J]. Materials China, 2023, 42(9): 699-721. [44] 曹京霞, 弭光宝, 蔡建明, 等. 高温钛合金制造技术研究进展[J]. 钛工业进展, 2018(1): 1-8. CAO Jingxia, MI Guangbao, CAI Jianming, et al.Progress on manufacturing technology of high temperature titanium alloys[J]. Titanium Industry Progress, 2018, 35(1): 1-8. [45] 赵飒. 无压反应浸渗法制备多孔TiAl基复合材料的组织与压缩性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2020. ZHAO Sa.Microstructure and compressive properties of porous TiAl matrix composites prepared by pressureless reactive infiltration[D]. Harbin: Harbin Institute of Technology, 2020. [46] INCE J C, PEERZADA M, MATHEWS L D, et al.Overview of emerging hybrid and composite materials for space applications[J]. Advanced Composites and Hybrid Materials, 2023, 6(4): 130. [47] 黄红岩, 苏力军, 雷朝帅, 等. 可重复使用热防护材料应用与研究进展[J]. 航空学报, 2020, 41(12): 023716. HUANG Hongyan, SU Lijun, LEI Chaoshuai, et al.Reusable thermal protective materials: application and research progress[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(12): 023716. [48] 刘文祎, 曲海涛, 苏亚东, 等. 一种钛基复合材料热防护蒙皮结构的制备方法: CN201910980875.5[P]. 2019-12-03. LIU Wenyi, QU Haitao, SU Yadong, et al. A preparation method for thermal protective skin structure of titani-um Matrix composite: CN201910980875.5[P]. 2019-12-03. [49] MAKENA I M, SHONGWE M B, RAMAKOKOVHU M M, et al.A review on sintered nickel based alloys[C]//Proceedings of the World Congress on Engineering. London: World Scientific Publishing Company, 2017: 922-927. [50] 蒋倩, 蒋立鹤, 黄云峰, 等. 镍基高温合金热处理工艺研究进展[J]. 锻压装备与制造技术, 2021, 56(6): 127-130. JIANG Qian, JIANG Lihe, HUANG Yunfeng, et al.Research progress on heat treatment process of nickel-based super-alloys[J]. China Metalforming Equipment & Manufacturing Technology, 2021, 56(6): 127-130. [51] 王会阳, 安云岐, 李承宇, 等. 镍基高温合金材料的研究进展[J]. 材料导报, 2011, 25(S2): 482-486. WANG Huiyang, AN Yunqi, LI Chengyu, et al.Research progress of Ni-based superalloys[J]. Materials Reports, 2011, 25(S2): 482-486. [52] STRÖßNER J, TEROCK M, GLATZEL U. Mechanical and microstructural investigation of nickel-based superalloy IN718 manufactured by selective laser melting(SLM)[J]. Advanced Engineering Materials, 2015, 17(8): 1099-1105. [53] 杨浩, 王方军, 李采, 等. 镍基高温合金的熔炼工艺研究进展[J]. 特殊钢, 2023, 44(3): 1-9. YANG Hao, WANG Fangjun, LI Cai, et al.Research progress on the melting process of nickel-based superalloys[J]. Special Steel, 2023, 44(3): 1-9. [54] KAYE A D, STREET A.Die Casting Metallurgy: Butterworths Monographs in Materials[M]. Amsterdam: Elsevier, 2016. [55] REARDON A C.Metallurgy for the Non-Metallurgist[M]. Materials Park, OH: ASM International, 2011. [56] 杨涛, 杜继红, 汪欣, 等. 难熔金属表面硅化物涂层的研究进展[J]. 材料保护, 2019, 52(7): 121-127. YANG Tao, DU Jihong, WANG Xin, et al.Research progress of silicide coatings for refractory metals[J]. Materials Protection, 2019, 52(7): 121-127. [57] 刘林. MoSi2基高温抗氧化涂层制备及性能研究[D]. 合肥: 中国科学技术大学, 2021. LIU Lin.Preparation and properties of MoSi2-based high temperature oxidation resistant coating[D]. Hefei: University of Science and Technology of China, 2021. [58] 毛绍宝, 杨英, 李海庆, 等. MoSi2和(Mo,W)Si2涂层的宽温域氧化过程[J]. 过程工程学报, 2019, 19(4): 826-835. MAO Shaobao, YANG Ying, LI Haiqing, et al.Oxidation processes of MoSi2 and (Mo,W)Si2 coatings in wide temperature range[J]. The Chinese Journal of Process Engineering, 2019, 19(4): 826-835. [59] 孙佳, 王玉, 付前刚. 铌合金高温热防护及其抗氧化硅化物涂层[J]. 中国材料进展, 2018, 37(10): 817-825. SUN Jia, WANG Yu, FU Qiangang.Thermal protections and silicide coatings on niobium alloy[J]. Materials China, 2018, 37(10): 817-825. [60] 蔡圳阳, 沈鸿泰, 刘赛男, 等. 难熔金属合金及其高温抗氧化涂层研究现状与展望[J]. 中国有色金属学报, 2020, 30(9): 1991-2010. CAI Zhenyang, SHEN Hongtai, LIU Sainan, et al.Review and prospect of refractory metal alloys and high temperature oxidation resistance coatings[J]. The Chinese Journal of Nonferrous Metals, 2020, 30(9): 1991-2010. [61] XIAO L R, ZHOU X J, WANG Y F, et al.Formation and oxidation behavior of Ce-modified MoSi2-NbSi2 coating on niobium alloy[J]. Corrosion Science, 2020, 173: 108751. [62] 侯震山, 丁炳杰. 铌或钽配合物的制备及其在催化芳香胺生成氧化偶氮苯类化合物的应用: CN202110804672.8[P]. 2021-11-02. HOU Zhenshan, DING Bingjie. Preparation of niobium or tantalum complexes and their application in catalyzing the formation of azobenzene oxide compounds from aromatic amines: CN202110804672.8[P]. 2021-11-02. [63] LI J Q, DENG N, WU P, et al.Elaborating the Cu-network structured of the W-Cu composites by sintering intermittently electroplated core-shell powders[J]. Journal of Alloys and Compounds, 2019, 770: 405-410. [64] 梁浩然, 刘艳明, 赵科遥, 等. 难熔金属表面高温防护涂层抗热震性能研究现状[J]. 材料保护, 2024, 57(3): 1-14. LIANG Haoran, LIU Yanming, ZHAO Keyao, et al.Research status on the thermal shock resistance of high-temperature protective coatings for refractory metal surface[J]. Materials Protection, 2024, 57(3): 1-14. [65] 王娜, 李海庆, 徐方涛, 等. 双组元液体火箭发动机推力室材料研究进展[J]. 宇航材料工艺, 2019, 49(3): 1-8. WANG Na, LI Haiqing, XU Fangtao, et al.Recent development of advanced materials for liquid rocket thruster chambers[J]. Aerospace Materials & Technology, 2019, 49(3): 1-8. [66] 肖宇翔. 钽合金高温热防护改性硅化物涂层制备与组织性能研究[D]. 长沙: 中南大学, 2023. XIAO Yuxiang.Preparation and properties of high-temperature protection modified silicide coatings on tantalum[D]. Changsha: Central South University, 2023. [67] 杨涛, 汪欣, 王振宇, 等. 熔烧温度对铌钨合金表面硅化物涂层显微组织和抗高温氧化性能的影响研究[J]. 材料保护, 2023, 56(9): 54-62. YANG Tao, WANG Xin, WANG Zhenyu, et al.Effect of sintering temperature on the microstructure and high temperature oxidation resistance of silicide coating on surface of NbW alloy[J]. Materials Protection, 2023, 56(9): 54-62. [68] 赵刚, 刘尖, 周小军, 等. 航天发动机用铌钨合金复合硅化物涂层制备及性能研究[J]. 稀有金属与硬质合金, 2023, 51(5): 44-49. ZHAO Gang, LIU Jian, ZHOU Xiaojun, et al.Study on preparation and performance of composite silicide coating on Nb-W alloy for space engine[J]. Rare Metals and Cemented Carbides, 2023, 51(5): 44-49. [69] 赵陆翔, 郭喜平, 姜嫄嫄. 铌基合金包埋渗法制备抗氧化硅化物涂层及其组织形成[J]. 中国有色金属学报, 2007, 17(4): 596-601. ZHAO Luxiang, GUO Xiping, JIANG Yuanyuan.Preparation and structural formation of oxidation-resistant silicide coatings on Nb-based alloy by pack cementation technique[J]. The Chinese Journal of Nonferrous Metals, 2007, 17(4): 596-601. [70] 韩杰胜, 苏博, 张爱军, 等. MoNbTaTiW难熔高熵合金表面硅化物涂层的制备与抗氧化机理[J]. 材料保护, 2022, 55(2): 1-8. HAN Jiesheng, SU Bo, ZHANG Aijun, et al.Preparation and oxidation resistance mechanism of silicide coating on MoNbTaTiW refractory high-entropy alloy[J]. Materials Protection, 2022, 55(2): 1-8. [71] 盛晓晨, 孟佳, 严彪, 等. 钽钨合金Si-Ti-Hf高温抗氧化涂层的制备及性能研究[J]. 粉末冶金工业, 2021, 31(2): 23-30. SHENG Xiaochen, MENG Jia, YAN Biao, et al.Preparation and oxidation behavior of Si-Ti-Hf high temperature anti-oxidation coatings on Ta-10W alloy[J]. Powder Metallurgy Industry, 2021, 31(2): 23-30. [72] FU T, SHEN F Q, ZHANG Y Y, et al.Oxidation protection of high-temperature coatings on the surface of Mo-based alloys: a review[J]. Coatings, 2022, 12(2): 141. [73] HOU S X, LIU Z D, LIU D Y, et al.Microstructure and oxidation resistance of Mo-Si and Mo-Si-Al alloy coatings prepared by electro-thermal explosion ultrahigh speed spraying[J]. Materials Science and Engineering A, 2009, 518(1/2): 108-117. [74] 安亮, 高昌琦, 贾建刚, 等. 金属硅化物抗氧化涂层的研究进展[J]. 中国腐蚀与防护学报, 2021, 41(3): 298-306. AN Liang, GAO Changqi, JIA Jiangang, et al.Review on metal silicide anti-oxidation coatings[J]. Journal of Chinese Society for Corrosion and Protection, 2021, 41(3): 298-306. [75] 刘辉, 白伟, 夏明星, 等. 铌合金及其抗氧化涂层研究进展[J]. 中国钼业, 2022, 46(6): 9-13. LIU Hui, BAI Wei, XIA Mingxing, et al.Research progress of niobium alloys and oxidation resistance coatings[J]. China Molybdenum Industry, 2022, 46(6): 9-13. [76] KOBAYASHI E, YOSHIHARA M, TANAKA R.Improvement in oxidation resistance of the intermetallic compound titanium aluminide by heat treatment under a low partial pressure oxygen atmosphere[J]. High Temperature Technology, 1990, 8(3): 179-184. [77] DONALD I W, MALLINSON P M, METCALFE B L, et al.Recent developments in the preparation, characterization and applications of glass- and glass-ceramic-to-metal seals and coatings[J]. Journal of Materials Science, 2011, 46: 1975-2000. [78] 马婷婷. 熔盐电镀金属铱高温抗氧化涂层的研究[D]. 北京: 北京有色金属研究总院, 2022. MA Tingting.Study on high temperature antioxidation coating of metal iridium by molten salt electroplating[D]. Beijing: General Research Institute for Nonferrous Metals, 2022. [79] 胡昌义, 陈力. 铼/铱发动机喷管研究最新进展[J]. 贵金属, 2007, 28(4): 57-62. HU Changyi, CHEN Li.Recent progress in Ir/Re rocket nozzel[J]. Precious Metals, 2007, 28(4): 57-62. [80] 付前刚, 张佩, 李贺军, 等. 一种成分及微结构可控高熵陶瓷改性涂层及制备方法: CN202110746078.8[P]. 2021- 08-31. FU Qiangang, ZHANG Pei, LI Hejun, et al. A high entropy ceramic modified coating with controllable composition and microstructure and a preparation method: CN202110746078.8[P]. 2021-08-31. [81] 孙暄, 胡斌, 熊智慧, 等. 航空航天领域用增材制造金属材料的研究进展[J]. 上海金属, 2024, 46(3): 1-12. SUN Xuan, HU Bin, XIONG Zhihui, et al.Progress in research on additive manufactured metallic materials reserved for aerospace field[J]. Shanghai Metals, 2024, 46(3): 1-12. [82] 张昆, 李美求, 魏轲, 等. 抗冲蚀磨损涂层制备技术及机理的研究进展[J]. 焊接, 2022(4): 9-16. ZHANG Kun, LI Meiqiu, WEI Ke, et al.Research progress on preparation technology and mechanism of erosion resistant coatings[J]. Welding & Joining, 2022(4): 9-16. [83] BELMONTE M.Advanced ceramic materials for high temperature applications[J]. Advanced Engineering Materials, 2006, 8(8): 693-703. [84] MA H Q, GAO B, WANG M Y, et al.Strategies for enhancing thermal conductivity of polymer-based thermal interface materials: a review[J]. Journal of Materials Science, 2021, 56(2): 1064-1086. [85] ZHOU L F, MILLER J, VEZZA J, et al.Additive manufacturing: a comprehensive review[J]. Sensors, 2024, 24(9): 2668. [86] GRUNDSTRÖM B. Additive manufacturing of lunar regolith simulant using direct ink writing[D]. Uppsala: Uppsala University, 2020. [87] JIMÉNEZ M, ROMERO L, DOMÍNGUEZ I A, et al. Additive manufacturing technologies: an overview about 3D printing methods and future prospects[J]. Complexity, 2019, 2019(1): 9656938. [88] PENG S J, LI P.Applications of nanomaterials and nanotechnology in military and aerospace fields[M]//Nanomaterials and Nanotechnology: Basic, Preparation and Applications. Singapore: Springer Nature, 2024: 265-308. [89] BHOI N K, SINGH H, PRATAP S.Developments in the aluminum metal matrix composites reinforced by micro/nano particles: a review[J]. Journal of Composite Materials, 2020, 54(6): 813-833. [90] WANG X X, YU G F, ZHANG J, et al.Conductive polymer ultrafine fibers via electrospinning: preparation, physical properties and applications[J]. Progress in Materials Science, 2021, 115: 100704. [91] SHI S, SI Y F, HAN Y T, et al.Recent progress in protective membranes fabricated via electrospinning: advanced materials, biomimetic structures, and functional applications[J]. Advanced Materials, 2022, 34(17): 2107938. [92] FAN S J, MI B S, WANG J J, et al.Research progress on the preparation of irradiation-resistant coating based on PVD technology[J]. Journal of Materials Research and Technology, 2024, 32: 4069-4091. [93] VARDELLE A, MOREAU C, THEMELIS N J, et al.A perspective on plasma spray technology[J]. Plasma Chemistry and Plasma Processing, 2015, 35(3): 491-509. [94] PRASHAR G, VASUDEV H.A comprehensive review on sustainable cold spray additive manufacturing: state of the art, challenges and future challenges[J]. Journal of Cleaner Production, 2021, 310: 127606. [95] MACCO B, KESSELS W M M. Atomic layer deposition of conductive and semiconductive oxides[J]. Applied Physics Reviews, 2022, 9(4): 041313. [96] LI C D, CHEN Z F, DONG W F, et al.A review of silicon-based aerogel thermal insulation materials: performance optimization through composition and microstructure[J]. Journal of Non-Crystalline Solids, 2021, 553: 120517. [97] MA Q J, REJAB M R M, SIREGAR J P, et al. A review of the recent trends on core structures and impact response of sandwich panels[J]. Journal of Composite Materials, 2021, 55(18): 2513-2555. [98] GRIEU S, FAUGEROUX O, TRAORÉ A, et al.Artificial intelligence tools and inverse methods for estimating the thermal diffusivity of building materials[J]. Energy and Buildings, 2011, 43(2/3): 543-554. [99] GUO K, YANG Z Z, YU C H, et al.Artificial intelligence and machine learning in design of mechanical materials[J]. Materials Horizons, 2021, 8(4): 1153-1172. |
|
|
|