|
|
Research progress of wear-resistant and corrosion-resistant coatings prepared by laser cladding |
ZHANG Kai1,2, CHEN Xiaoming1,2,3, ZHANG Lei1,2, FU Li2, LIU Wei1, JIANG Zhipeng1 |
1. Key Laboratory of Sudace Engineering of Equipment for Hydraulic Engineering of Zhejiang Province, Standard & Quality Control Research Institute, Ministry of Water Resources, Hangzhou 310012, China;; 2. Water Machinery and Remanufacturing Technology Engineering Laboratory of Zhejiang Province, Hangzhou Mechanical Research Institute, Ministry of Water Resources, Hangzhou 310012, China; 3. State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 410083, China |
|
|
Abstract Wear-resistant and corrosion-resistant coatings manufactured by laser cladding technology is used to solve the wear and corrosion problems of parts in harsh environments. It has good prospects for development. In this paper, the development history of laser cladding technology is briefly introduced, and the research progress of the influence of laser cladding technology on the preparation of wear-resistant and corrosion-resistant coatings is summarized emphatically at home and abroad, as well as the relationship between the change of molten pool and laser cladding process parameters and the structure properties of the cladding layer. The research progress of laser cladding technology for wear-resistant and corrosion-resistant coatings in specific application parts and working conditions is also described, including parts of hydraulic engineering equipment, aerospace equipment, petroleum mining equipment, etc. Finally, it summarizes the key issues that restrict the comprehensive industrial application of the technology, as well as the research directions that need to be carried out in terms of process and equipment.
|
Received: 27 March 2019
Published: 12 July 2019
|
|
|
|
|
[1] SONG J.Research progress of laser cladding forming technology[J]. Journal of Mechanical Engineering, 2010, 46(14): 29-39. [2] LEI X, CAO H, LIU H, et al.Study on laser cladding remanufacturing process with FeCrNiCu alloy powder for thin-wall impeller blade[J]. International Journal of Advanced Manufacturing Technology, 2017, 90(5-8): 1383-1392. [3] 张阁, 周香林, 张济山. 高耐磨耐蚀合金涂层相关研究进展[J]. 材料导报, 2005, 19(s1): 356-359. ZHANG Ge, ZHOU Xianglin, ZHANG Jishan.Research progress in alloy coating with high wear-and corrosion- resistance[J]. Materials Reports, 2005, 19(s1): 356-359. [4] 沈宇, 关义青, 白松, 等. 激光熔覆技术的发展现状及展望[J]. 制造技术与机床, 2011(10): 21-24. SHEN Yu, GUAN Yiqing, BAI Song, et al.Development status and prospects of laser cladding technology[J]. Manufacturing Technology & Machine Tool, 2011(10): 21-24. [5] GNANAMUTH D S.High temperature coatings by surface melting: US, 3952180[P].1976-04-01. [6] CHEN M H, ZHU H M, WANG X L.Research progress on laser cladding amorphous coatings on metallic substrates[J]. Journal of Materials Engineering, 2017, 45(1): 120-128. [7] GOODARZI D M, PEKKARINEN J, SALMINEN A.Analysis of laser cladding process parameter influence on the clad bead geometry[J]. Welding in the World, 2017, 61(5): 1-9. [8] YU Z, YU T, SUN J, et al.Effect of laser cladding on forming qualities of YCF101 alloy powder in the different lap joint modes[J]. International Journal of Advanced Manufacturing Technology, 2018, 96(9-12): 1-11. [9] HUI Z, KAI C, WEI Z, et al.Laser cladding in-situ micro and sub-micro/nano Ti-V carbides reinforced Fe-based layers by optimizing initial alloy powders size[J]. Materials Letters, 2018, 220: 44-46. [10] 刘鹏良, 孙文磊, 黄勇, 等. 激光功率对熔覆Ni基涂层性能的影响[J]. 机械设计与制造, 2018(S2): 149-152. LIU Pengliang, SUN Wenlei, HUANG Yong, et al.Effect of laser power on properties of cladding Ni based coatings[J]. Machinery Design & Manufacture, 2018(S2): 149-152. [11] 乔虹, 李庆棠, 符寒光, 等. 激光熔覆工艺参数对Fe-Cr-B合金涂层组织和硬度的影响[J]. 材料热处理学报, 2014, 35(2): 164-168. QIAO Hong, LI Qingtang, FU Hanguang, et al.Effect of processing parameters on microstructure and hardness of Fe- Cr-B alloy coating by laser cladding[J]. Transactions of Materials and Heat Treatment, 2014, 35(2): 164-168. [12] 贺长林, 陈少克, 周中河. 激光熔覆工艺对镍基碳化钛熔覆层组织的影响[J]. 金属热处理, 2014(7): 111-116. HE Changlin, CHEN Shaoke, ZHOU Zhonghe.Effect of laser cladding process on microstructure of nickel-base titanium carbide cladding layer[J]. Heat Treatment of Metals, 2014(7): 111-116. [13] 付宇明, 高中堂, 郑丽娟. 镍基碳化钨合金粉末激光熔覆工艺的研究[J]. 热加工工艺, 2011, 40(14): 102-105. FU Yuming, GAO Zhongtang, ZHENG Lijuan.Research on technological parameters of laser cladding Ni-based alloy with WC[J]. Hot Working Technology, 2011, 40(14): 102-105. [14] 张晓东, 揭晓华, 罗松, 等. WC/Co-Cr复合涂层激光熔覆工艺优化与表征[J]. 表面技术, 2015(6): 11-16. ZHANG Xiaodong, JIE Xiaohua, LUO Song, et al.Process Optimization for Laser Cladding Operation of WC/Co-Cr and Its Characterization[J]. Surface Technology, 2015(6): 11-16. [15] 赵树国, 李成龙. 激光熔覆工艺参数对CBN膜层裂纹率的影响[J]. 中国表面工程, 2015, 28(6): 119-126. ZHAO Shuguo, LI Chenglong.Relationship between crack rate of cbn coating and parameters of laser cladding[J]. China Surface Engineering, 2015, 28(6): 119-126. [16] LI G J, LI J, LUO X.Effects of high temperature treatment on microstructure and mechanical properties of laser-clad NiCrBSi/WC coatings on titanium alloy substrate[J]. Materials Characterization, 2014, 98: 83-92. [17] XIE S, LI R, YUAN T, et al.Laser cladding assisted by friction stir processing for preparation of deformed crack-free Ni-Cr-Fe coating with nanostructure[J]. Optics & Laser Technology, 2017: S0030399217302037. [18] 王玉玲, 刘善勇, 张翔宇, 等. 超声振动辅助激光熔覆3540Fe/CeO2涂层实验及分析[J]. 中国机械工程, 2018, 29(21): 2600-2605. WANG Yuling, LIU Shanyong, ZHANG Xiangyu, et al.Experiments and analyses of 3540Fe/CeO2 coatings by ultrasonic vibration assisted laser cladding[J]. China Mechanical Engineering, 2018, 29(21): 2600-2605. [19] 李德英, 张坚, 赵龙志, 等. 超声辅助激光熔覆SiC/316L温度场和应力场分析[J]. 焊接学报, 2017, 38(5): 35-39. LI Deying, ZHANG Jian, ZHAO Longzhi, et al.Analysis of temperature and stress field in laser cladding SiC/316L by ultrasound[J]. Transactions of the China Welding Institution, 2017, 38(5): 35-39. [20] 刘洪喜, 纪升伟, 蒋业华, 等. 旋转磁场辅助激光熔覆Fe60复合涂层的显微组织与性能[J]. 中国激光, 2013, 40(1): 115-120. LIU Hongxi, JI Shengwei, JIANG Yehua, et al.Microstructure and property of Fe60 composite coatings by rotating magnetic field auxiliary laser cladding[J]. Chinese Journal of Lasers, 2013, 40(1): 115-120. [21] 蔡传雄,刘洪喜,蒋业华, 等. 交变磁场对激光熔覆Fe基复合涂层组织结构及其耐磨性的影响[J]. 摩擦学学报, 2013, 33(3): 229-235. CAI Chuanxiong, LIU Hongxi, JIANG Yehua, et al.Influence of AC magnetic field on microstructure and wear behaviors of laser cladding Fe-based composite coating[J]. Tribology, 2013, 33(3): 229-235. [22] 许华, 郑启光, 丁周华, 等. 电磁搅拌辅助激光熔覆硬质合金的研究[J]. 激光技术, 2005, 29(5): 449-451. XU Hua, ZHENG Qiguang, DING Zhouhua, et al.Study on laser cladding hard alloy with electromagnetic stirring[J]. Laser Technology, 2005, 29(5): 449-451. [23] WANG Y T, MO J W, TAO L L.Wear resistance of a large thick Fe based amorphous composite coating deposited by laser cladding[J]. Materials Science Forum, 2018, 913: 390-395. [24] GUO Y X, LIU Q B, SHANG X J.In situ TiN-reinforced CoCr2 FeNiTi0.5 high-entropy alloy composite coating fabricated by laser cladding[J]. Rare Metals, 2019(5): 1-6. [25] BO F, KAI F, LI Z. Study on the effect of Cu addition on the microstructure and properties of NiTi alloy fabricated by laser cladding[J]. Materials Letters, 2018, 220: S0167577X18303860. [26] TORRES H, VUCHKOY T, RIPOLL M R, et al.Tribological behaviour of MoS2-based self-lubricating laser cladding for use in high temperature applications[J]. Tribology International, 2018, 126: 153-165. [27] TORRES H, VUCHKOV T, SLAWIK S, et al. Self-lubricating laser claddings for reducing friction and wear from room temperature to 600 ℃[J]. Wear, 2018, 408-409: 22-33. [28] FERNÁNDEZ M R, GARCÍA A, CUETOS J M, et al. Effect of actual WC content on the reciprocating wear of a laser cladding NiCrBSi alloy reinforced with WC[J]. Wear, 2015, 324-325: 80-89. [29] LIU H, WANG C, ZHANG X, et al.Improving the corrosion resistance and mechanical property of 45 steel surface by laser cladding with Ni60CuMoW alloy powder[J]. Surface and Coatings Technology, 2013, 228: S296-S300. [30] LUO X, LI J, LI G J.Effect of NiCrBSi content on microstructural evolution, cracking susceptibility and wear behaviors of laser cladding WC/Ni-NiCrBSi composite coatings[J]. Journal of Alloys and Compounds, 2015, 626: 102-111. [31] 蒋海兵, 刘其斌, 张玲琰, 等. 稀土氧化物对激光熔覆生物陶瓷涂层在模拟体液中组织形貌与降解性能的影响[J]. 稀有金属, 2016(6): 593-599. JIANG Haibing, LIU Qibin, ZHANG Lingyan, et al.Morphology and degradability of laser-ciadded bioceramic coating with rare earth additions in simulated body fluid[J]. Chinese Journal of Rare Metals, 2016(6): 593-599. [32] 徐婷, 李华兵, 洪翔, 等. 激光熔覆TiB2颗粒增强镍基合金复合涂层的微观组织与摩擦学性能研究[J]. 兵工学报, 2016, 37(8): 1497-1505. XU Ting, LI Huabing, HONG Xiang, et al.Microstructure and tribological properties of laser cladding TiB2/Ni-based alloy composite coatings[J]. Acta Armamentarii, 2016, 37(8): 1497-1505. [33] 徐景波, 余红雅. 20CrMo钢激光熔覆Fe-Cr涂层与性能研究[J]. 铸造技术, 2017(10): 2415-2418. XU Jingbo, YU Hongya.Study on laser cladding Fe-Cr coating and performance of 20CrMo steel[J]. Foundry Technology, 2017(10): 2415-2418. [34] SHIXING Y, SHIYUN D, BINSHI X, et al.Effect of molten pool convection on pores and elements distribution in the process of laser cladding[J]. Infrared & Laser Engineering, 2014. [35] 牛犇, 卢继平, 唐其超. 激光熔覆获得稳定熔池的工艺优化[J]. 新技术新工艺, 2015(1): 65-69. NIU Ben, LU Jiping, TANG Qichao.Optimization of the laser cladding process for stable molten pool size[J]. New Technology & New Process, 2015(1): 65-69. [36] 雷剑波, 杨洗陈, 陈娟, 等. 激光熔覆熔池表面温度场分布的检测[J]. 中国激光, 2008, 35(10): 1605-1608. LEI Jianbo, YANG Xichen, CHEN Juan, et al.Measurement of surface temperature field distribution in molten pool of laser cladding[J]. Chinese Journal of Lasers, 2008, 35(10): 1605-1608. [37] 马永, 马建光, 孙楚光, 等. 钛合金表面激光熔覆复合涂层的熔池行为对微观组织和性能的影响[J]. 装备制造技术, 2017(2): 120-123. MA Yong, MA Jianguang, SUN Chuguang, et al.Effect of molten pool behavior on microstructure and properties of laser cladding composite coatings on titanium alloy surface[J]. Equipment Manufacturing Technology, 2017(2): 120-123. [38] 张青, 莫易敏. 铝合金表面激光熔覆中影响熔池流动性的研究[J]. 中国水运, 2007, 7(12): 47-48. ZHANG Qing, MO Yimin.Effect of laser cladding on fluidity of molten pool on aluminum alloy surface[J]. China Water Transport, 2007, 7(12): 47-48. [39] LEI Y W, GONG C Q, SUN R L. Finite element analysis of molten pool depth and dilution rate in laser clad TiC/NiCrBSiC Coatings on Ti6Al4V[J]. Advanced Materials Research, 2010, 154-155: 951-954. [40] 管永浩. 柱塞泵活塞工作表面激光熔覆涂层耐磨耐蚀性能研究[D]. 济南: 济南大学, 2017. GUAN Yonghao.Research on laser cladding wear and corrosion resistance layers on working surface of plunger pump piston[D]. Jinan: University of Jinan, 2017. [41] 张磊, 陈小明, 吴燕明, 等. 水轮机过流部件抗磨蚀涂层技术研究进展[J]. 材料导报, 2017, 31(17): 75-83. ZHANG Lei, CHEN Xiaoming, WU Yanming, et al.Technological advances in coatings for abrasion-cavitation erosion protection of hvdraulic turbine flow-parts[J]. Materials Reports, 2017, 31(17): 75-83. [42] 江桦锐. 00Cr13Ni4Mo不锈钢水轮机叶片的激光表面改性研究[D]. 武汉: 华中科技大学, 2012. JIANG Huarui.Laser surface modification of 00Cr13Ni4Mo hydro turbine blade stainless steel[D]. Wuhan: Huazhong University of Science and Technology, 2012. [43] 曹力, 赵坚, 陈小明, 等. 水轮机纳米WC抗磨蚀陶瓷涂层性能研究及应用[J]. 水力发电, 2017(8): 84-87. CAO Li, ZHAO Jian, CHEN Xiaoming, et al.Performance study and application of nano WC ceramic abrasion resistant coatings on hydro turbine[J]. Water Power, 2017(8): 84-87. [44] 臧辰峰. 辊道辊用20钢表面激光熔覆耐磨损涂层研究[D]. 沈阳: 东北大学, 2012. ZANG Chenfeng.Reasearches of laser cladding ant-wear layers on 20 steel surface[D]. Shenyang: Northeastern University, 2012. [45] 马宗彬, 陈铭, 丁紫阳. 激光熔覆耐蚀强化技术在液压支架上的应用研究[J]. 山东煤炭科技, 2016(2): 102-103. MA Zongbin, CHEN Ming, DING Ziyang.The application research of laser cladding corrosion resistant strengthening technology on hydraulic support[J]. Shandong Coal Science and Technology, 2016(2): 102-103. [46] 李海龙. 单体液压支柱铁基激光熔覆层的组织与性能研究[D]. 兰州: 兰州理工大学, 2015. LI Hailong.The study of microstructure and properties of iron-based laser cladding layer on hydraulic prop[D]. Lanzhou: Lanzhou University of Technology, 2015. [47] 韩文静, 宋进朝, 刘学功, 等. 煤矿机械应用激光熔覆技术的研究与实践[J]. 电镀与精饰, 2016, 38(8): 18-22. HAN Wenjin, SONG Jinchao, LIU Xuegong, et al.Research and practice of laser cladding technology applied on coal mining machinery in China[J]. Plating & Finishing, 2016, 38(8): 18-22. [48] 汪定江, 夏成宝, 王东锋, 等. 基于激光熔覆技术的航空发动机涡轮叶片裂纹修复新工艺[J]. 新技术新工艺, 2010(8): 72-74. WANG Dingjiang, XIA Chengbao, WANG Dongfeng, et al.A new repair process of aero engine turbine lamina crack based on laser cladding technology[J]. New Technology & New Process, 2010(8): 72-74. [49] 刘珍峰, 李正佳. 激光熔覆技术在航空工业中的应用[J]. 航空精密制造技术, 2007, 43(1): 37-40. LIU Zhenfeng, LI Zhengjia.Application of laser cladding in aviation industry[J]. Aviation Precision Manufacturing Technology, 2007, 43(1): 37-40. [50] 王华明, 张凌云, 李安, 等. 高性能航空金属结构材料及特种涂层激光熔化沉积制备与成形研究进展[J]. 金属热处理, 2008, 33(1): 82-85. WANG Huaming, ZHANG Lingyun, LI An, et al.Progress on laser melting deposition processing and manufacturing of advanced aeronautical metallic structural materials and coatings[J]. Heat Treatment of Metals, 2008, 33(1): 82-85. |
|
|
|