|
|
Effects of laser power on microstructure and properties of Ni-based alloy cladding layers |
CHEN Xiaoming1,2,3, JIANG Zhipeng1,2, ZHANG Lei1,2, LIU Wei1,4, ZHAO Jian1,2, FU Li2,4 |
1. Standard & Quality Control Research Institute, Hangzhou 310012, China;; 2. Key Laboratory of Surface Engineering of Equipments for Hydraulic Engineering of Zhejiang Province, Hangzhou, 310012, China; 3. University of Science & Technology Beijing, Beijing 100083, China;; 4. Hydraulic Machinery and Remanufacturing Technology Engineering Laboratory of Zhejiang Province, Hangzhou 310012, China |
|
|
Abstract The effects of laser power on the microstructure and wear-resistant and corrosion-resistant properties of Ni-based alloy cladding coatings were studied in this paper, in order to get the optimal laser power parameters and obtain Ni-based alloy coatings with good metallurgical bonding and excellent wear resistance and corrosion resistance. The results showed that Ni-based alloy coating prepared by laser cladding is metallurgically bonded to the substrate without obvious cracks and holes, and the main composition of the Ni-based alloy coating is γ-(Ni,Fe) solid solution, and a small amount of Cr3C7 phase appeared in relatively lower power. With increasing laser powers, the element contents of Ni and Cr in the cladding layers decreased, the element content of Fe in the cladding layers increased, and the thickness of cladding layers increased from 545 μm to 1 100 μm, microstructure was coarsened obviously and the transition from dendrites to cellular dendrites tendency. Meanwhile, with increasing laser powers, the microhardness decreased from 508 HV to 375 HV, and the wear resistance of the specimens decreased, but the anti-corrosion resistance was enhanced, the corrosion current density decreased from 4.347×10-7 A/cm2 to 8.257×10-8 A/cm2.
|
Received: 08 January 2019
Published: 12 July 2019
|
|
|
|
|
[1] WENG Fei, CHEN Chuanzhong, YU Huijun.Research status of laser cladding on titanium and its alloys: A review[J]. Materials & Design, 2014, 58(1): 412-425. [2] LIU Jianli, YU Huijun, CHEN Chuanzhong, et al.Research and development status of laser cladding on magnesium alloys: A review[J]. Optics and Lasers in Engineering, 2017, 93(2): 195-210. [3] CHEN Jianming, GUO Chun, ZHOU Jiansong.Microstructure and tribological properties of laser cladding Fe-based coating on pure Ti substrate[J]. Transactions of Nonferrous Metals Society of China, 2012, 22(9): 2171-2178. [4] FENG Shurong, TANG Haibo, ZHANG Shuquan, et al.Microstructure and wear resistance of laser clad TiB-TiC/ TiNi-Ti2Ni intermetallic coating on titanium alloy[J]. Transactions of Nonferrous Metals Society of China, 2012, 22(7): 1667-1673. [5] 马海波, 张维平. 钛合金表面激光熔覆钴基复合涂层的组织和性能[J]. 稀有金属材料与工程, 2010, 39(12): 2189-2192. MA Haibo, ZHANG Weiping.Microstructure and properties of Co-based alloy laser clad layer on titanium alloy surface[J]. Rare Metal Materials and Engineering, 2010, 39(12): 2189-2192. [6] 张晓伟, 刘洪喜, 蒋业华, 等. Ti6Al4V合金表面激光熔覆功能复合涂层研究进展[J]. 稀有金属材料与工程, 2012, 41(1): 178-183. ZHANG Xiaowei, LIU Hongxi, JIANG Yehua, et al.Research progress of functional composite coatings on Ti6Al4V alloy surface prepared by laser cladding technique[J]. Rare Metal Materials and Engineering, 2012, 41(1): 178-183. [7] QUAZI M M, FAZAL M A, HASEEB A S M A, et al. Effect of rare earth elements and their oxides on tribo-mechanical performance of laser claddings: A review[J]. Journal of Rare Earths, 2016, 34(6): 549-564. [8] 陈小明, 王海金, 周夏凉, 等. 激光表面改性技术及其研究进展[J]. 材料导报, 2018, 32(1): 341-344. CHEN Xiaoming, WANG Haijin, ZHOU Xialiang, et al.Laser surface modification technology and research progress[J]. Materials Review, 2018, 32(1): 341-344. [9] 高阳, 佟百运, 梁勇. 激光熔敷Ni基合金涂层的结构与性能[J]. 材料研究学报, 2003, 17(1): 87-91. GAO Yang, TONG Baiyun, LIANG Yong.Investigation on structure and properties of laser remelting Ni-base alloy coatings[J]. Chinese Journal of Materials Research, 2003, 17(1): 87-91. [10] 王存山, 夏元良, 李刚, 等. 宽带激光熔覆Ni基合金涂层结合区组织结构[J]. 应用激光, 2001, 21(2): 88-90. WANG Cunshan, XIA Yuanliang, LI Gang, et al.Microstructure of bonding zone of Ni-based alloy coating produced by broad-beam laser cladding[J]. Applied Laser, 2001, 21(2): 88-90. [11] 金君, 董晨竹, 徐东, 等. 电火花沉积Ni基合金涂层的摩擦磨损特性[J]. 表面技术, 2011, 40(6): 32-34. JIN Jun, DONG Chenzhu, XU Dong, et al.Tribological properties of Ni-based coating prepared by electrospark deposition[J]. Surface Technology, 2011, 40(6): 32-34. [12] 李刚, 侯俊英, 刘丽, 等. 激光熔覆Ni基非晶复合涂层组织结构及性能研究[J]. 表面技术, 2010, 39(4): 15-17. LI Gang, HOU Junying, LIU Li, et al.Study on microstructure and properties of the Ni-based amorphous composite coating prepared by laser cladding[J]. Surface Technology, 2010, 39(4): 15-17. [13] YE Xiaoyang, BAE Heehun, SHIN Y C, et al.In situ synthesis and characterization of Zr-based amorphous composite by laser direct deposition[J]. Metallurgical and Materials Transactions A, 2015, 46(9): 4316-4325. [14] 达则晓丽, 朱彦彦, 李铸国. 激光功率对激光熔覆Fe-Co-B- Si-Nb涂层组织和性能的影响[J]. 中国表面工程, 2012, 25(3): 52-56. DAZE Xiaoli, ZHU Yanyan, LI Zhuguo.Effect of laser power on microstructure and properties of laser cladding Fe-Co- B-Si-Nb coatings[J]. China Surface Engineering, 2012, 25(3): 52-56. [15] WANG Yanfang, LU Qinglong, XIAO Lijun, et al.Laser cladding Fe-Cr-Si-P amorphous coatings on 304L stainless[J]. Rare Metal Materials and Engineering, 2014, 43(2): 274-277. [16] WANG Cunshan, CHEN Yongzhe, LI Ting, et al.Composition design and laser cladding of Ni-Zr-Al alloy coating on the magnesium surface[J]. Applied Surface Science, 2009, 256(5): 1609-1613. [17] 柳吉华, 王存山. 扫描速度对激光熔覆Ni-Zr-Al合金涂层组织性能的影响[J]. 应用激光, 2011, 31(5): 400-404. LIU Jihua, WANG Cunshan.Influence of scanning velocity on microstructure and properties of laser clad Ni-Zr-Al alloy coatings[J]. Applied Laser, 2011, 31(5): 400-404. [18] 董丹阳, 张滨, 陈岁元, 等. 扫描速度对硅钢表面激光熔覆层组织和硬度的影响[J]. 东北大学学报(自然科学版), 2008, 29(6): 849-852. DONG Danyang, ZHANG Bin, CHEN Suiyuan, et al.Effect of scanning speed on microstructure and microhardness of laser cladding of silicon steel[J]. Journal of Northeastern University (Natural Science), 2008, 29(6): 849-852. [19] 李嘉宁. 激光熔覆技术及应用[M]. 北京: 化学工业出版社, 2015. LI Jianing.Laser Cladding Technology and Application[M]. Bejing: Chemical Industry Press, 2015. [20] 张帅, 董霞, 王恪典, 等. 搭接率对激光重熔氧化锆涂层结构及热震性能的影响[J]. 西安交通大学学报, 2018, 52(10): 72-79. ZHANG Shuai, DONG Xia, WANG Kedian, et al.Effect of overlap rate on microstructure and thermal shock properties of laser re-melted yttria stabilized zirconia coating[J]. Journal of Xi’an Jiaotong University, 2018, 52(10): 72-79. [21] 王志坚, 董世运, 徐滨士, 等. 激光熔覆工艺参数对金属成形效率和形状的影响[J]. 红外与激光工程, 2010, 39(2): 315-319. WANG Zhijian, DONG Shiyun, XU Binshi, et al.Effect of laser cladding processing parameters on metal forming efficiency and geometry[J]. Infrared and Laser Engineering, 2010, 39(2): 315-319. [22] 柳吉华, 王存山. 扫描速度对激光熔覆Ni-Zr-Al合金涂层组织性能的影响[J]. 应用激光, 2011, 31(5): 400-404. LIU Jihua, WANG Cunshan.Influence of scanning velocity on microstructure and properties of laser clad Ni-Zr-Al alloy coatings[J]. Applied Laser, 2011, 31(5): 400-404. [23] ROSENTHAL D.The theory of moving source of heat and its application to metal treatments[J]. Transactions of the ASME, 1946, 86(43): 849-853. [24] XIE Guozhi, LIN Xiaoyan, WANG Keyu, et al.Corrosion characteristeristics of plasma-sprayed Ni-coated WC coatings comparison with different post treatment[J]. Corrosion Science, 2007, 49(2): 662-671. [25] LIANG Gongying, WONG T T, MacAlpine J M K, et al. A study of wear resistance of plasma-sprayed and laser-remelted coatings on aluminium alloy[J]. Surface and Coatings Technology, 2007, 127(2): 233-238. |
|
|
|