|
|
Effects of heat treatment on the microstructure and mechanical property of PAN-based carbon fibers |
XU Yixi2, YANG Fenghao1, WANG Xiyun2, YI Maozhong1 |
1. State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China; 2. No.1 Middle School of Lixian County, Lixian 415500, China |
|
|
Abstract The PAN-based carbon fibers were heat-treated at temperatures ranging from 1 000 ℃ to 1 800 ℃. The microstructure and mechanical properties of the carbon fibers were analyzed by X-ray diffraction, scanning electron microscopy, transmission electron microscopy and single-fiber tensile test. The results show that the nitrogen content of PAN-based carbon fibers decreases and the surface roughness decreases first and then increases with increasing the heat treatment temperature. The microstructure in the skin region suggests that the turbostratic graphite structure gradually transforms into a three-dimensional graphite structure during heat treatment. The continuity of the graphite crystallites is improved due to the coalescence between adjacent graphite crystallites. The observation of the fracture morphologies shows that the crack initiation and propagation are controlled by the microstructure and defects of carbon fibers in the skin region. Due to the improvement of the cross-linking between the graphite crystallites, the tensile strengths of carbon fibers heat-treated at 1 200 ℃ and 1 400 ℃ increase to 4.68 GPa and 4.59 GPa respectively, which are higher than that of the as-received carbon fibers. The tensile strength of the carbon fibers is mainly determined by the amount of defects in the skin region, the cross-linking between the graphite crystallites and the interfacial residual stress.
|
Received: 25 October 2018
Published: 12 July 2019
|
|
|
|
|
[1] WINDHORST T, BLOUNT G.Carbon-carbon composites: a summary of recent developments and applications[J]. Materials & Design, 1997, 18(18): 11-15. [2] WU S, YI M, GE Y, et al.Effect of carbon fiber reinforcement on the tribological performance and behavior of aircraft carbon brake discs[J]. Carbon, 2017, 117: 279-292. [3] KRENKEL W.Carbon Fiber Reinforced CMC for high- performance structures[J]. International Journal of Applied Ceramic Technology, 2004, 1(2): 188-200. [4] 李贺军, 罗瑞盈, 杨峥. 碳/碳复合材料在航空领域的应用研究现状[J]. 材料工程, 1997(8): 8-10. LI Hejun, LUO Ruiying, YANG Zheng.The status and future on research and application about carbon/carbon composites in the aeronautical area[J]. Journal of Materials Engineering, 1997(8): 8-10. [5] 庞伟林, 吴皇, 周文艳, 等. 反应熔渗法制备C/C-ZrC-Cu复合材料的组织结构与力学性能[J]. 粉末冶金材料科学与工程, 2017, 22(2): 205-211. PANG Weilin, WU Huang, ZHOU Wenyan, et al.Microstructures and mechanical properties of C/C-ZrC-Cu composites fabricated by RMI[J]. Materials Science and Engineering of Powder Metallurgy, 2017, 22(2): 205-211. [6] 刘云启, 武帅, 葛毅成, 等. 国产PAN基炭纤维增强炭基体复合材料的制动摩擦行为[J]. 粉末冶金材料科学与工程, 2017, 22(1): 108-114. LIU Yunqi, WU Shuai, GE Yicheng, et al.Braking friction behavior of carbon-based composites reinforced by domestic PAN-based carbon fibers[J]. Materials Science and Engineering of Powder Metallurgy, 2017, 22(1): 108-114. [7] 雷宝灵, 易茂中, 徐惠娟, 等. C/C复合材料微观结构对其制动摩擦磨损性能的影响[J]. 摩擦学学报, 2010, 30(4): 373-378. LEI Baoling, YI Maozhong, XU Huijuan, et al.Effects of microstructure on the frictional properties of C/C composites[J]. Tribology, 2010, 30(4): 373-378. [8] WU S, LIU Y, GE Y, et al.Surface structures of PAN-based carbon fibers and their influences on the interface formation and mechanical properties of carbon-carbon composites[J]. Composites Part A, 2016, 90: 480-488. [9] 赵建国, 李克智, 李贺军. 纤维含量和热处理对炭/炭复合材料性能的影响[J]. 材料研究学报, 2005, 19(3): 293-298. ZHAO Jianguo, LI Kezhi, LI Hejun.Effects of fiber volume fraction and thermal treatment on the properties of C/C composites[J]. Chinese Journal of Materials Research, 2005, 19(3): 293-298. [10] TZENG S S, CHR Y G.Evolution of microstructure and properties of phenolic resin-based carbon/carbon composites during pyrolysis[J]. Materials Chemistry & Physics, 2002, 73(2/3): 162-169. [11] 李晔, 黄启忠, 王林山. 树脂浸渍法对炭/炭复合材料力学性能的影响[J]. 新型炭材料, 2003, 18(2): 117-122. LI Ye, HUANG Qizhong, WANG Linshan.Effect of resin impregnation on the mechanical properties of C/C composites[J]. New Carbon Materials, 2003, 18(2): 117-122. [12] 王宇清, 罗瑞盈. 炭/炭复合材料致密化工艺研究现状[J]. 炭素技术, 2011, 30(2): 20-25. WANG Yuqing, LUO Ruiying.Research situation of densification technologies for carbon/carbon composites[J]. Carbon Techniques, 2011, 30(2): 20-25. [13] KIM M, JANG D, TEJIMA S, et al.Strengthened PAN-based carbon fibers obtained by slow heating rate carbonization[J]. Scientific Reports, 2016, 6: 22988. [14] HAN G C, NEWCOMB B A, GULGUNJE P V, et al.High strength and high modulus carbon fibers[J]. Carbon, 2015, 93: 81-87. [15] ZHANG W X, LIU J, WU G.Evolution of structure and properties of PAN precursors during their conversion to carbon fibers[J]. Carbon, 2003, 41(14): 2805-2812. [16] ZHONG Y J, BIAN W F, WANG M L.The effect of nanostructure on the tensile modulus of carbon fibers[J]. Journal of Materials Science, 2016, 51(7): 3564-3573. [17] TANAKA F, OKABE T, OKUDA H, et al.Factors controlling the strength of carbon fibres in tension[J]. Composites Part A, 2014, 57(1): 88-94. [18] PERRET R, RULAND W.The microstructure of PAN-base carbon fibres[J]. Journal of Applied Crystallography, 1970, 3(6): 525-532 [19] LI D, LU C, WU G, et al.Structural heterogeneity and its influence on the tensile fracture of PAN-based carbon fibers[J]. RSC Advances, 2014, 4(105): 60648-60651. [20] NUNNA S, NAEBE M, HAMEED N, et al.Evolution of radial heterogeneity in polyacrylonitrile fibres during thermal stabilization, an overview[J]. Polymer Degradation & Stability, 2017, 136: 20-30. [21] 冯志海, 李同起, 杨云华, 等. 碳纤维在高温下的结构、性能演变研究[J]. 中国材料进展, 2012, 31(8): 7-14. FENG Zhihai, LI Tongqi, YANG Yunhua, et al.Evolution of the structure and performance of carbon fibers at high temperatures[J]. Materials China, 2012, 31(8): 7-14. [22] 韩赞, 张学军, 田艳红, 等. 石墨化温度对PAN基高模量碳纤维微观结构的影响[J]. 化工进展, 2011, 30(8): 1805-1808. HAN Zan, ZHANG Xuejun, TIAN Yanhong, et al.Effect of graphitization temperature on microstructure of PAN-based high modulus graphite fibers[J]. Chemical Industry and Engineering Progress, 2011, 30(8): 1805-1808. [23] 陈腾飞, 黄伯云, 廖寄乔, 等. 热处理温度对PAN基炭纤维结构的影响[J]. 功能材料, 2002, 33(4): 447-449. CHEN Tengfei, HUANG Boyun, LIAO Jiqiao, et al.Effect of heat-treatment temperature on microstructure and mechanical performance of PAN-based carbon fibers[J]. Journal of Functional Materials, 2002, 33(4): 447-449. [24] 李东风, 王浩静, 王心葵. PAN基碳纤维在石墨化过程中的拉曼光谱[J]. 光谱学与光谱分析, 2007, 27(11): 2249-2253. LI Dongfeng, WANG Haojing, WANG Xinkui.Raman spectra of PAN-Based carbon fibers during graphitization[J]. Spectroscopy and Spectral Analysis, 2007, 27(11): 2249-2253. [25] TANAKA F, OKABE T, OKUDA H, et al.The effect of nanostructure upon the deformation micromechanics of carbon fibres[J]. Carbon, 2013, 52(2): 372-378. [26] TANAKA F, OKABE T, OKUDA H, et al.Factors controlling the strength of carbon fibres in tension[J]. Composites Part A, 2014, 57(1): 88-94. [27] 贺福. 高性能碳纤维原丝与干喷湿纺[J]. 高科技纤维与应用, 2004, 29(4): 6-12. HE Fu.Precursors for high performance carbon fibers and dry-jet wet spinning[J]. Hi-Tech Fiber & Application, 2004, 29(4): 6-12. [28] 李阳, 杨永岗, 刘朗. 湿纺和干湿纺炭纤维的表面结构分析[J]. 材料导报, 2011, 25(24): 27-30. LI Yang, YANG Yonggang, LIU Lang.Surface structure analysis of carbon fiber pepared by wet spinning and dry-jet wet spinning method[J]. Materials Review, 2011, 25(24): 27-30. [29] GAO A, ZHAO C, LUO S, et al.Correlation between graphite crystallite distribution morphology and the mechanical properties of carbon fiber during heat treatment[J]. Materials Letters, 2011, 65(23/24): 3444-3446. [30] RAHAMAN M S A, ISMAIL A F, MUSTAFA A. A review of heat treatment on polyacrylonitrile fiber[J]. Polymer Degradation & Stability, 2007, 92(8): 1421-1432. [31] NAITO K, TANAKA Y, YANG J M, et al.Tensile properties of ultrahigh strength PAN-based, ultrahigh modulus pitch-based and high ductility pitch-based carbon fibers[J]. Carbon, 2008, 46(2): 189-195. |
|
|
|