|
|
Microstructure and properties of ultrafine-grained WC-AlxCrFeCoNi composites prepared by hot pressing |
ZHOU Panlong, XIAO Daihong, ZHOU Pengfei, YU Yongxin, YUAN Minhui |
The National Key Laboratory of Science and Technology for National Defense on High-strength Structural Materials, Central South University, Changsha 410083, China |
|
|
Abstract AlxCrFeCoNi (x=0.5, 1) high entropy alloy powder was prepared by gas atomization, and mixed with WC powder by high-energy ball milling to obtain WC-AlxCrFeCoNi composite powders. The WC-AlxCrFeCoNi composite was prepared by hot pressing sintering. The microstructure, mechanical properties and corrosion behavior of the sintered samples were studied by X-ray diffraction, scanning electron microscopy, Vickers hardness and electrochemical corrosion test. The results show that replacing Co with AlxCrFeCoNi high entropy alloy as bonding phase can inhibit WC grain growth and refine grain size. The WC-AlxCrFeCoNi has higher hardness and better fracture toughness than traditional WC-10Co cemented carbide. Among them, the WC-10AlCrFeCoNi alloy has the highest hardness of 20.3 GPa, while the WC-10Al0.5CrFeCoNi alloy has the maximum fracture toughness of 12.0 MPa·m1/2. WC-10AlxCrFeCoNi composite has better corrosion resistance than WC-10Co traditional cemented carbide.
|
Received: 20 September 2018
Published: 12 July 2019
|
|
|
|
|
[1] 刘咏. 硬质合金应用与发展前景[J]. 中国金属通报, 2010, 31: 36-37. LIU Yong.Application and development prospect of cemented carbide[J]. China Metal Bulletin, 2010, 31: 36-37. [2] 吴宋超, 王玉香. 超细WC-Co硬质合金研究进展[J]. 世界有色金属, 2010, 11: 51-53. WU Songchao, WANG Yuxiang.Research progress of ultra-fine WC-Co cemented carbides[J]. World Nonferrous Metals, 2010, 11: 51-53. [3] 潘志君, 张恒, 刘宁, 等. 全球钴供应市场结构及定价权分析[J]. 中国矿业, 2017, 26(8): 18-21. PAN Zhijun, ZHANG Heng, LIU Ning, et al.Analysis of global cobalt supply market structure and pricing power[J]. China Mining, 2017, 26(8): 18-21. [4] 陈德勇, 罗在清. WC-Ni硬质合金的特性、发展及其应用[J]. 硬质合金, 2007, 24(1): 43-46. CHEN Deyong, LUO Zaiqing.Characteristics, development and application of WC-Ni cemented carbide[J]. Cemented Carbide, 2007, 24(1): 43-46. [5] 陈金栌, 朱定一, 林登宜. Ni3Al基合金的研究与应用进展[J]. 材料导报, 2006, 20(1): 35-38. CHEN Jinlu, ZHU Dingyi, LIN Dengyi.Progress in research and application of Ni3Al-based alloys[J]. Materials Review, 2006, 20(1): 35-38. [6] 肖代红, 李秀秀, 申婷婷, 等. 添加LaB6对超细晶WC-Ni3Al合金的组织与力学性能影响[J]. 中南大学学报, 2015, 46(1): 81-87. XIAO Daihong, LI Xiuxiu, SHEN Tingting, et al.Effect of LaB6 addition on microstructure and mechanical properties of ultrafine grain WC-Ni3Al alloys[J]. Journal of Central South University, 2015, 46(1): 81-87. [7] LI X, CHEN J, ZHENG D, et al.Preparation and mechanical properties of WC-10Ni3Al cemented carbides with plate-like triangular prismatic WC grains[J]. Journal of Alloys and Compounds, 2012, 544(24): 134-140. [8] ZHOU P F, XIAO D H, YUAN T C.Comparison between ultrafine-grained WC-Co and WC-HEA-cemented carbides[ ]. Powder Metallurgy, 2016, 60(1): 1-6. [9] ZHU G, LIU Y, YE J.Early high-temperature oxidation behavior of Ti(C,N)-based cermets with multi-component AlCoCrFeNi high-entropy alloy binder[J]. International Journal of Refractory Metals and Hard Materials, 2014, 44(5): 35-41. [10] CHEN C S, YANG C C, CHAI H Y, et al.Novel cermet material of WC/multi-element alloy[J]. International Journal of Refractory Metals and Hard Materials, 2014, 43(12): 200-204. [11] YEH J W, CHEN S K, LIN S J, et al.Nanostructured high entropy alloys with multiple principal elements: novel alloy design concepts and outcomes[J]. Advanced Engineering Materials, 2004, 6(5): 299-303. [12] 邱星武,张云鹏. 高熵合金的特点及研究现状[J]. 稀有金属与硬质合金, 2012, 40(1): 44-47. QIU Xingwu, ZHANG Yunpeng.The characteristics of high- entropy alloy and their latest development[J]. Rare Metals and Cemented carbides, 2012, 40(1): 44-47. [13] WANG Y P, LI B S, REN M X, et al.Microstructure and compressive properties of AlCrFeCoNi high entropy alloy[J]. Materials Science and Engineering A, 2008, 491(1): 154-158. [14] YANG C, LIN J N, ZENG J, et al.High-Strength AlCrFeCoNi high entropy alloys fabricated by using metallic glass powder as precursor[J]. Advanced Engineering Materials, 2016, 18(2): 348-353. [15] ZHANG Y. Mechanical properties and structures of high entropy alloys and bulk metallic glasses composites[J]. Materials Science Forum, 2010, 654/656: 1058-1061. [16] WANG W R, WANG W L, YEH J W.Phases, microstructure and mechanical properties of AlxCoCrFeNi high-entropy alloys at elevated temperatures[J]. Journal of Alloys and Compounds, 2014, 589(9): 143-152. [17] LI Q H, YUE T M, GUO Z N, et al.Microstructure and corrosion properties of AlCoCrFeNi high entropy alloy coatings deposited on AISI 1045 Steel by the electrospark process[J]. Metallurgical Transactions A, 2013, 44(4): 1767-1778. [18] SCHUBERT W D, NEUMEISTER H, KINGER G, et al.Hardness to toughness relationship of fine-grained WC-Co hard metals[J]. International Journal of Refractory Metals and Hard Materials, 1998, 16(2): 133-142. [19] LÜ Y K, HU R Y, YAO Z H, et al. Cooling rate effect on microstructure and mechanical properties of AlxCoCrFeNi high entropy alloys[J]. Materials and Design, 2017(7), 132: 392-399. [20] JOOST R, PIRSO J, VILIUS M, et al.Recycling of WC-Co hard metals by oxidation and carbothermal reduction in combination with reactive sintering[J]. Estonian Journal of Engineering, 2012, 18: 127-139. [21] CHOKSHI A H, ROSEN A, KARCH J, et al.On the validity of the hall-petch relationship in nanocrystalline materials[J]. Scripta Metallurgica, 1989, 23(10): 1679-1683. [22] 胡道平, 何宝山, 孔德会. Cr含量对WC基硬质合金耐腐蚀性能的影响[J]. 腐蚀与防护, 2006, 27(8): 382-386. HU Daoping, HE Baoshan, KONG Dehui.Effect of Cr content on corrosion resistance of WC-based cemented carbides[J]. Corrosion and Protection, 2006, 27(8): 382-386. [23] KAO Y F, LEE T D, CHEN S K, et al.Electrochemical passive properties of AlxCoCrFeNi (x= 0, 0.25, 0.50, 1.00) alloys in sulfuric acids[J]. Corrosion Science, 2010, 52(3): 1026-1034. |
|
|
|