|
|
Effects of adding Al-Mg-Sc-Zr alloy on microstructure and properties of boron carbide prepared by hot press sintering |
XU Xuejun1, XU Zhiwei2, YUAN Tiechui2, ZHOU Xiangxing2 |
1. Zhongshan New Taixing Powder Metallurgy Co., Ltd., Zhongshan 528400, China; 2. State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China |
|
|
Abstract B4C composite ceramics were prepared by hot press sintering process with pure B4C powder and atomized Al-Mg-Sc-Zr alloy powder as raw materials mixed by ball milling method. The effects of sintering temperature and the addition of Al-Mg-Sc-Zr alloy on the microstructure, hardness, bending strength, and fracture toughness of the ceramics were investigated. The results show that Al-Mg-Sc-Zr alloy transforms into liquid phase at high temperature, and reacts with free C and B4C during sintering, which promotes sintering of ceramics and reduces porosity. With the increase of sintering temperature, the relative density of B4C composite ceramics increases, which can reach 99.6% when sintering at 2 100 ℃. The addition of Al-Mg-Sc-Zr alloy improves the mechanical properties of B4C composite ceramics, the hardness (HV), bending strength, and fracture toughness of the ceramics sintered at 2 100 ℃ increase to 3 859, (423.7±12.4) MPa, and 4.45 MPa·m1/2, respectively.
|
Received: 14 September 2023
Published: 23 January 2024
|
|
|
|
|
[1] 孟凡然, 王琨, 冯荣. 无压烧结碳化硼材料研究进展[J]. 中国陶瓷工业, 2020, 27(6): 15-18. MENG Fanran, WANG Kun, FENG Rong.Progress in boron carbide materials sintered without pressure[J]. China Ceramic Industry, 2020, 27(6): 15-18. [2] 唐国宏, 张兴华, 陈昌麒. 碳化硼超硬材料综述[J]. 材料导报, 1994(4): 69-72. TANG Guohong, ZHANG Xinghua, CHEN Changqi.A comprehensive review on boron carbide[J]. Materials Reports, 1994(4): 69-72. [3] 邵荔宁, 刘彪, 孙保和, 等. 碳化硼材料动压气浮轴承零件精密加工[J]. 导航与控制, 2019, 18(5): 40-48. SHAO Lining, LIU Biao, SUN Baohe, et al.Precision machining of boron carbide dynamic pneumatic floating bearing parts[J]. Navigation and Control, 2019, 18(5): 40-48. [4] 杜贤武, 张志晓, 王为民, 等. 粉末粒径对热压烧结碳化硼致密化及力学性能的影响[J]. 无机材料学报, 2013, 28(10): 1062-1066. DU Xianwu, ZHANG Zhixiao, WANG Weimin, et al.Effect of particle size on densification and mechanical properties of hot-pressed boron carbide[J]. Journal of Inorganic Materials, 2013, 28(10): 1062-1066. [5] 罗娟, 杨科伟, 王萌, 等. 防弹陶瓷的烧结工艺及发展现状[J]. 陶瓷, 2020(9): 24-27. LUO Juan, YANG Kewei, WANG Meng, et al.Sintering process and development status of bulletproof ceramics[J]. Ceramics, 2020(9): 24-27. [6] HE Q L, TIAN S, XIE J J, et al.Microstructure and anisotropic mechanical properties of B6.5C-TiB2-SiC-BN composites fabricated by reactive hot pressing[J]. Journal of the European Ceramic Society, 2020, 40(8): 2862-2869. [7] SAIRAM K, SONBER J K, MURTHY T S R C, et al. Development of B4C-HfB2 composites by reaction hot pressing[J]. International Journal of Refractory Metals and Hard Materials, 2012, 35: 32-40. [8] ZOU J, HUANG S G, VANMEENSEL K, et al.Spark plasma sintering of superhard B4C-ZrB2 ceramics by carbide boronizing[J]. Journal of the American Ceramic Society, 2013, 96(4): 1055-1059. [9] MASHHADI M, TAHERI-NASSAJ E, SGLAVO V M, et al.Effect of Al addition on pressureless sintering of B4C[J]. Ceramics International, 2009, 35(2): 831-837. [10] 叶锐, 杨继东, 彭小燕, 等. Al-Zn-Mg-Sc-Zr合金搅拌摩擦焊接接头的显微组织、力学性能及局部腐蚀性能[J]. 中国有色金属学报, 2015, 25(10): 2656-2665. YE Rui, YANG Jidong, PENG Xiaoyan, et al.Microstructure, mechanical properties and localized corrosion property of friction stir welded joint of Al-Zn-Mg-Sc-Zr alloy[J]. The Chinese Journal of Nonferrous Metals, 2015, 25(10): 2656-2665. [11] 黄宏锋, 姜锋, 刘兴涛, 等. Al3(Sc,Zr)粒子与剪切带对Al-Mg-Sc-Zr合金再结晶及断裂行为的影响[J]. 中国有色金属学报, 2015, 25(5): 1117-1127. HUANG Hongfeng, JIANG Feng, LIU Xingtao, et al.Effects of Al3(Sc,Zr) particles and shear bands on recrystallization and fracture behaviors of Al-Mg-Sc-Zr alloy[J]. The Chinese Journal of Nonferrous Metals, 2015, 25(5): 1117-1127. [12] ZHANG W, XING Y, JIA Z H, et al.Effect of minor Sc and Zr addition on microstructure and properties of ultra-high strength aluminum alloy[J]. Transactions of Nonferrous Metals Society of China, 2014, 24(12): 3866-3871. [13] 唐皓州, 李瑞迪, 祝弘滨, 等. Al-Mg-Sc合金粉末激光定向沉积修复Al-Zn-Mg-Cu铝合金基板的组织及力学性能[J]. 粉末冶金材料科学与工程, 2022, 27(1): 111-120. TANG Haozhou, LI Ruidi, ZHU Hongbin, et al.Microstructure and mechanical property of Al-Zn-Mg-Cu aluminum alloy substrate repaired by laser directed energy deposition with Al-Mg-Sc alloy powder[J]. Materials Science and Engineering of Powder Metallurgy, 2022, 27(1): 111-120. [14] 朱溪, 袁铁锤, 王敏卜, 等. 选区激光熔化增材制造高强度Al-Mg-Sc-Zr合金的微观组织与力学性能[J]. 粉末冶金材料科学与工程, 2022, 27(2): 205-214. ZHU Xi, YUAN Tiechui, WANG Minbu, et al.Microstructure and mechanical properties of Al-Mg-Sc-Zr alloy prepared by selective laser melting[J]. Materials Science and Engineering of Powder Metallurgy, 2022, 27(2): 205-214. [15] GUO H, ZHANG Z W, ZHANG Y, et al.Improving the mechanical properties of B4C/Al composites by solid-state interfacial reaction[J]. Journal of Alloys and Compounds, 2020, 829: 154521. [16] KUMAZAWA T, HONDA T, ZHOU Y.Pressureless sintering of boron carbide ceramics[J]. Journal of the Ceramic Society of Japan, 2008, 116(1360): 1319-1321. [17] YANG M S, ZHUANG Y X, XING P F.High-performance B4C-LaB6 composite ceramics fabricated via hot-pressing sintering with La2O3 as sintering additive[J]. Ceramics International, 2021, 47(23): 32675-32684. [18] WEN Q, TAN Y Q, ZHONG Z H, et al.High toughness and electrical discharge machinable B4C-TiB2-SiC composites fabricated at low sintering temperature[J]. Materials Science and Engineering A, 2017, 701: 338-343. [19] LI R D, WANG M B, YUAN T C, et al.Selective laser melting of a novel Sc and Zr modified Al-6.2Mg alloy: processing, microstructure, and properties[J]. Powder Technology, 2017, 319: 117-128. [20] ZHOU X X, FANG H Y, YUAN T C, et al.Effect of slight Sn modification on mechanical properties and corrosion behavior of Ti- (2-4 wt%) Mn alloys fabricated via powder metallurgy[J]. Materials Characterization, 2023, 203: 113068. [21] CAO K, LIU C Y, LI Z L, et al.Microstructure, mechanical properties, and damping capacity of high-Zn-content Al-Zn-Mg alloys with Sc and Zr additions[J]. Vacuum, 2023, 216: 112491. [22] YE J, PAN Q L, LIU B, et al.Influences of small addition of Sc and Zr on grain structure and quenching sensitivity of Al-Zn-Mg-Cu alloys[J]. Materials Today Communications, 2023, 35: 105943. [23] 陈建, 潘复生. 合金元素影响铝/陶瓷界面润湿性的研究现状[J]. 兵器材料科学与工程, 1999(4): 53-58. CHEN Jian, PAN Fusheng.Present study status of effects of alloying elements on the wettability of aluminium/ceramic system[J]. Ordnance Material Science and Engineering, 1999(4): 53-58. [24] XU T, MEI Q S, LIAO L Y, et al.A comparative study on the microstructure and strengthening behaviors of Al matrix composites containing micro- and nano-sized B4C particles[J]. Materials Science and Engineering A, 2023, 874: 145066. [25] GONG Z Y, ZHAO W, GUAN K, et al.Influence of grain boundary and grain size on the mechanical properties of polycrystalline ceramics: grain-scale simulations[J]. Journal of the American Ceramic Society, 2020, 103(10): 5900-5913. [26] RICE R, FREIMAN S, BECHER P.Grain-size dependence of fracture energy in ceramics: I, experiment[J]. Journal of the American Ceramic Society, 1981, 64(6): 345-350. |
|
|
|