[1] SHAH S S A, JAVED M S, NAJAM T, et al. Metal oxides for the electrocatalytic reduction of carbon dioxide: mechanism of active sites, composites, interface and defect engineering strategies[J]. Coordination Chemistry Reviews, 2022, 471: 214716.
[2] NIELSEN D U, HU X M, DAASBJERG K, et al.Chemically and electrochemically catalysed conversion of CO2 to CO with follow-up utilization to value-added chemicals[J]. Nature Catalysis, 2018, 1(4): 244-254.
[3] LIU S S, WANG M F, CHENG Q Y, et al.Turning waste into wealth: sustainable production of high-value-added chemicals from catalytic coupling of carbon dioxide and nitrogenous small molecules[J]. ACS Nano, 2022, 16(11): 17911-17930.
[4] KONG Q Q, AN X G, LIU Q, et al.Copper-based catalysts for the electrochemical reduction of carbon dioxide: progress and future prospects[J]. Materials Horizons, 2023, 10(3): 698-721.
[5] XIE H, WANG T Y, LIANG J S, et al.Cu-based nanocatalysts for electrochemical reduction of CO2[J]. Nano Today, 2018, 21: 41-54.
[6] BACK S, LIM J, KIM N Y, et al.Single-atom catalysts for CO2 electroreduction with significant activity and selectivity improvements[J]. Chemical Science, 2017, 8(2): 1090-1096.
[7] GATTRELL M, GUPTA N, CO A.A review of the aqueous electrochemical reduction of CO2 to hydrocarbons at copper[J]. Journal of Electroanalytical Chemistry, 2006, 594(1): 1-19.
[8] QIAO J L, LIU Y Y, HONG F, et al.A review of catalysts for the electroreduction of carbon dioxide to produce low-carbon fuels[J]. Chemical Society Reviews, 2014, 43(2): 631-675.
[9] GUO C Y, SHI Y M, LU S Y, et al.Amorphous nanomaterials in electrocatalytic water splitting[J]. Chinese Journal of Catalysis, 2021, 42(8): 1287-1296.
[10] KANG J X, YANG X Y, HU Q, et al.Recent progress of amorphous nanomaterials[J]. Chemical Reviews, 2023, 123(13): 8859-8941.
[11] CHEN Y, LAI Z C, ZHANG X, et al.Phase engineering of nanomaterials[J]. Nature Reviews Chemistry, 2020, 4(5): 243-256.
[12] TAN C L, ZHANG H.Wet-chemical synthesis and applications of non-layer structured two-dimensional nanomaterials[J]. Nature Communications, 2015, 6: 7873.
[13] ZHANG H.Ultrathin two-dimensional nanomaterials[J]. ACS Nano, 2015, 9(10): 9451-9469.
[14] CHEN Y, FAN Z X, ZHANG Z C, et al.Two-dimensional metal nanomaterials: synthesis, properties, and applications[J]. Chemical Reviews, 2018, 118(13): 6409-6455.
[15] WANG L, WAN J W, WANG J Y, et al.Small structures bring big things: performance control of hollow multishelled structures[J]. Small Structures, 2021, 2(1): 2000041.
[16] ZHANG J T, LI M, LIANG X, et al.Multishelled FeCo@FeCoP@C hollow spheres as highly efficienthydrogen evolution catalysts[J]. ACS Applied Materials & Interfaces, 2019, 11(1): 1267-1273.
[17] LI H H, YU S H.Recent advances on controlled synthesis and engineering of hollow alloyed nanotubes for electrocatalysis[J]. Advanced Materials, 2019, 31(38): 1803503.
[18] CHANDRASEKARAN S, YAO L, DENG L B, et al.Recent advances in metal sulfides: from controlled fabrication to electrocatalytic, photocatalytic and photoelectrochemical water splitting and beyond[J]. Chemical Society Reviews, 2019, 48(15): 4178-4280.
[19] GARCÍA-MUELAS R, DATTILA F, SHINAGAWA T, et al. Origin of the selective electroreduction of carbon dioxide to formate by chalcogen modified copper[J]. Journal of Physical Chemistry Letters, 2018, 9(24): 7153-7159.
[20] DUAN Y X, MENG F L, LIU K H, et al.Amorphizing of Cu nanoparticles toward highly efficient and robust electrocatalyst for CO2 reduction to liquid fuels with high faradaic efficiencies[J]. Advanced Materials, 2018, 30(14): 1706194.
[21] 李丽, 石永霞, 侯曼, 等. 铜基材料电催化二氧化碳还原反应的研究进展[J]. 稀有金属, 2022, 46(6): 681-694.
LI Li, SHI Yongxia, HOU Man, et al.Research progress of copper-based materials for electrocatalytic CO2 reduction reaction[J]. Chinese Journal of Rare Metals, 2022, 46(6): 681-694.
[22] GHANBARI D, SALAVATI-NIASARI M, ESMAEILI- ZARE M, et al.Hydrothermal synthesis of CuS nanostructures and their application on preparation of ABS-based nanocomposite[J]. Journal of Industrial and Engineering Chemistry, 2014, 20(5): 3709-3713.
[23] JUNG D, LEE S, KIM M S, et al.The effect of pH on crystal characteristics and IR absorbance of copper sulfide nanoparticles[J]. Journal of Nanoscience and Nanotechnology, 2013, 13(10): 7169-7172.
[24] ZHANG H J, ZHOU C, ZENG H X, et al.Novel sulfur vacancies featured MIL-88A(Fe)@CuS rods activated peroxymonosulfate for coumarin degradation: different reactive oxygen species generation routes under acidic and alkaline pH[J]. Process Safety and Environmental Protection, 2022, 166: 11-22.
[25] ZHENG Y H, RONG J, ZHU Y, et al.Construction of highly dispersed active sites in MoS2/CuS/C electrocatalyst based on organic-inorganic hybrid nanoflower for efficient hydrogen generation[J]. Applied Surface Science, 2022, 574: 151725.
[26] HUANG P F, YING H J, ZHANG S L, et al.In situ fabrication of MXene/CuS hybrids with interfacial covalent bonding via Lewis acidic etching route for efficient sodium storage[J]. Journal of Materials Chemistry A, 2022, 10(41): 22135-22144.
[27] BARROCAS B T, AMBROŽOVÁ N, KOČÍ K. Photocatalytic reduction of carbon dioxide on TiO2 heterojunction photocatalysts: a review[J]. Materials, 2022, 15(3): 967.
[28] NAVALÓN S, DHAKSHINAMOORTHY Á, ALVARO M, et al. Photocatalytic CO2 reduction using non-titanium metal oxides and sulfides[J]. Chemistry-Sustainability-Energy- Materials, 2013, 6(4): 562-577.
[29] LOW J X, CHENG B, YU J G.Surface modification and enhanced photocatalytic CO2 reduction performance of TiO2: a review[J]. Applied Surface Science, 2017, 392: 658-686.
[30] WANG L M, CHEN W L, ZHANG D D, et al.Surface strategies for catalytic CO2 reduction: from two-dimensional materials to nanoclusters to single atoms[J]. Chemical Society Reviews, 2019, 48(21): 5310-5349.
[31] KUHL K P, CAVE E R, ABRAM D N, et al.New insights into the electrochemical reduction of carbon dioxide on metallic copper surfaces[J]. Energy & Environmental Science, 2012, 5(5): 7050-7059.
[32] NIE X W, ESOPI M R, JANIK M J, et al.Selectivity of CO2 reduction on copper electrodes: the role of the kinetics of elementary steps[J]. Angewandte Chemie- International Edition, 2013, 52(9): 2459-2462.
[33] GAO D F, ZHANG Y, ZHOU Z W, et al.Enhancing CO2 electroreduction with the metal-oxide interface[J]. Journal of the American Chemical Society, 2017, 139(16): 5652-5655.
[34] 王艳美. 铜基催化剂应用于电催化还原二氧化碳的研究[D]. 北京: 北京化工大学, 2022.
WANG Yanmei.Study on electrocatalytic reduction of carbon dioxide with copper-based catalysts[D]. Beijing: Beijing University of Chemical Technology, 2022.
[35] TAN M L, HUANG B, SU L N, et al.Amorphous nanomaterials: emerging catalysts for electrochemical carbon dioxide reduction[J]. Advanced Energy Materials, 2024, 14(40): 2402424.
[36] 陈宇翔, 何捍卫. 两步水热法制备纳米花Ni3Fe/Ni3S高效电催化剂促进碱性电解水析氧反应[J]. 粉末冶金材料科学与工程, 2023, 28(5): 427-437.
CHEN Yuxiang, HE Hanwei.Two-step hydrothermal preparing nanoflower-like Ni3Fe/Ni3S2 high-efficiency electrocatalysts to enhance oxygen evolution reaction in alkaline media[J]. Materials Science and Engineering of Powder Metallurgy, 2023, 28(5): 427-437.
[37] 彭振新, 何捍卫. 无定形NiCoSe电极的碱性电解水析氢性能[J]. 粉末冶金材料科学与工程, 2023, 28(4): 379-389.
PENG Zhenxin, HE Hanwei.Hydrogen evolution performance of amorphous NiCoSe electrode for alkaline electrolysis of water[J]. Materials Science and Engineering of Powder Metallurgy, 2023, 28(4): 379-389.
[38] HU F, YANG L, JIANG Y W, et al.Ultrastable Cu catalyst for CO2 electroreduction to multicarbon liquid fuels by tuning C-C coupling with CuTi subsurface[J]. Angewandte Chemie-International Edition, 2021, 60(50): 26122-26127.