首页   |   期刊介绍   |   编 委 会   |   投稿指南   |   出版法规   |   出版伦理   |   期刊订阅   |   联系我们   |   留言板   |   广告合作   |   ENGLISH
工艺技术

α-Al2O3及硅溶胶强化处理对氧化硅基陶瓷型芯组织和性能的影响

  • 彭勇慧 ,
  • 周文韬 ,
  • 寇宝弘 ,
  • 欧阳静
展开
  • 1.中南大学 资源加工与生物工程学院 无机材料系, 长沙 410083;
    2.中南大学 矿物材料及其应用湖南省重点实验室, 长沙 410083

收稿日期: 2024-10-31

  修回日期: 2025-01-27

  网络出版日期: 2025-04-15

基金资助

国家自然科学基金资助项目(52374292); 中国宝武低碳冶金创新基金资助项目(BWLCF202309); 长沙市自然科学基金资助项目(KQ2208271)

Effects of α-Al2O3 and silica sol strengthening treatment on the microstructure and performance of silica based ceramic cores

  • PENG Yonghui ,
  • ZHOU Wentao ,
  • KOU Baohong ,
  • OUYANG Jing
Expand
  • 1. Department of Inorganic Materials, School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China;
    2. Hunan Key Laboratory of Mineral Materials and Application, Central South University, Changsha 410083, China

Received date: 2024-10-31

  Revised date: 2025-01-27

  Online published: 2025-04-15

摘要

本文选用α-Al2O3作为矿化剂制备精密铸造用氧化硅基陶瓷型芯,采用X射线衍射仪、场发射扫描电子显微镜、能谱仪、三点弯曲试验等,研究矿化剂用量与硅溶胶强化处理对型芯的物相组成、显微组织、收缩率、显气孔率、密度和抗弯强度等的影响。结果表明:α-Al2O3对陶瓷型芯有双重作用,一方面其作为增强相能阻碍熔融石英的黏滞流动,提升型芯的强度;另一方面其优异的高温稳定性降低了陶瓷型芯的烧结致密度,进而导致型芯的收缩率和强度下降。而硅溶胶强化处理能有效封闭气孔,促进型芯烧结。经硅溶胶强化处理后,w(α-Al2O3)=2%的型芯的室温抗弯强度提升至16.6 MPa,高温抗弯强度为37.5 MPa,满足了精密铸造行业用陶瓷型芯的应用指标。

本文引用格式

彭勇慧 , 周文韬 , 寇宝弘 , 欧阳静 . α-Al2O3及硅溶胶强化处理对氧化硅基陶瓷型芯组织和性能的影响[J]. 粉末冶金材料科学与工程, 2025 , 30(2) : 115 -122 . DOI: 10.19976/j.cnki.43-1448/TF.2024098

Abstract

In this study, α-Al2O3 was selected as a mineralizer for the preparation of silica based ceramic cores used in precision casting. Techniques such as X-ray diffractometer, field emission scanning electron microscope, energy dispersive spectroscopy, and the three-point bending testing were employed to investigate the effects of mineralizer amount and silica sol strengthening treatment on the phase composition, microstructures, shrinkage rate, open porosity, density, and bending strength of the ceramic cores. The results indicate that α-Al2O3 exerts a dual effect on the ceramic cores. On one hand, it acts as a reinforcing phase that hinders the viscous flow of fused quartz and enhances the strength of the cores; on the other hand, its excellent high-temperature stability reduces the sintering density of the ceramic cores, leading to decreased shrinkage rates and strength. However, silica sol strengthening treatment effectively seals the pores and promotes sintering of the cores. After silica sol strengthening treatment, cores with w(α-Al2O3)=2% exhibit an increase in room temperature bending strength to 16.6 MPa and high-temperature bending strength to 37.5 MPa, meeting the application standards for ceramic cores in the precision casting industry.

参考文献

[1] NIU S X, XU X Q, LI X, et al.Microstructure evolution and properties of silica-based ceramic cores reinforced by mullite fibers[J]. Journal of Alloys and Compounds, 2020, 829: 154494.
[2] PAN Z P, GUO J Z, LI S M, et al.Experimental study on high temperature performances of silica-based ceramic core for single crystal turbine blades[J]. Ceramics International, 2022, 48(1): 548-555.
[3] ZHANG J, WU J M, LIU H, et al.Infiltration of silica slurry into silica-based ceramic cores prepared by selective laser sintering based on pre-sintering[J]. Ceramics International, 2023, 49(19): 31477-31484.
[4] FAN J X, XU X Q, NIU S X, et al.Anisotropy management on microstructure and mechanical property in 3D printing of silica-based ceramic cores[J]. Journal of the European Ceramic Society, 2022, 42(10): 4388-4395.
[5] ZHENG W, WU J M, CHEN S, et al.Preparation of high-performance silica-based ceramic cores with B4C addition using selective laser sintering and SiO2-Al2O3 sol infiltration[J]. Ceramics International, 2023, 49(4): 6620-6629.
[6] LI X, NIU S X, WANG D S, et al.Microstructure and crystallization kinetics of silica-based ceramic cores with enhanced high-temperature property[J]. Materials, 2023, 16(2): 606.
[7] XI F S, ZHANG Z, WAN X H, et al.High-performance porous silicon/nanosilver anodes from industrial low-grade silicon for lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2020, 12(43): 49080-49089.
[8] WANG J H, CHUNG C H, CHI P W, et al.Si@C core-shell nanostructure-based anode for Li-ion transport[J]. ACS Applied Nano Materials, 2023, 6(13): 12578-12587.
[9] CHAE C, NOH H J, LEE J K, et al.A high-energy Li-ion battery using a silicon-based anode and a nano-structured layered composite cathode[J]. Advanced Functional Materials, 2014, 24(20): 3036-3042.
[10] ZHANG Z Q, HUANG Y J, XIE Q Y, et al.Functional polymer-ceramic hybrid coatings: status, progress, and trend[J]. Progress in Polymer Science, 2024, 154: 101840.
[11] ACKLEY B J, MARTIN K L, KEY T S, et al.Advances in the synthesis of preceramic polymers for the formation of silicon-based and ultrahigh-temperature non-oxide ceramics[J]. Chemical Reviews, 2023, 123(8): 4188-4236.
[12] KAZEMI A, FAGHIHI-SANI M A, ALIZADEH H R. Investigation on cristobalite crystallization in silica-based ceramic cores for investment casting[J]. Journal of the European Ceramic Society, 2013, 33(15/16): 3397-3402.
[13] NIU S X, LIU Z P, LUO Y S, et al.Reinforcement of silica-based ceramic cores based on amorphous and polycrystalline mullite fibers[J]. Ceramics International, 2023, 49(19): 31378-31384.
[14] CHEN X, HAN J Q, ZHANG W, et al.Silica-based ceramic core for aviation applications: facile pore filling and flexural strength improvement[J]. International Journal of Applied Ceramic Technology, 2019, 16(6): 2181-2189.
[15] LEE W E, JAYASEELAN D D, ZHANG S.Solid-liquid interactions: the key to microstructural evolution in ceramics[J]. Journal of the European Ceramic Society, 2008, 28(7): 1517-1525.
[16] ZHANG B, YANG Y, FAN X L.Processing, microstructure, and properties of porous ceramic composites with directional channels[J]. Journal of Materials Science & Technology, 2024, 168: 1-15.
[17] ZHANG X Y, CHENG X P, JANSOHN M, et al.t-ZrO2 toughened Al2O3 free-standing films and as oxidation mitigating thin films on silicon nitride via colloidal processing of flame made nanopowders(NPs)[J]. Journal of the American Ceramic Society, 2021, 104(3): 1281-1296.
[18] EFTEKHARI A, MOVAHEDI B, DINI G, et al.Fabrication and microstructural characterization of the novel optical ceramic consisting of α-Al2O3@amorphous alumina nanocomposite core/shell structure[J]. Journal of the European Ceramic Society, 2018, 38(9): 3297-3304.
[19] ZHAN L J, WU C Z, ZHANG F Q, et al.Coordinated regulation for α-Al2O3 and mullite structures in the alumina-mullite fiber based on the different adding form of Fe element[J]. Journal of the European Ceramic Society, 2024, 44(6): 4185-4195.
[20] ZHENG W, WU J M, CHEN S, et al.Influence of Al2O3 content on mechanical properties of silica-based ceramic cores prepared by stereolithography[J]. Journal of Advanced Ceramics, 2021, 10(6): 1381-1388.
文章导航

/

版权所有 © 《粉末冶金材料科学与工程》编辑部
地址:长沙市麓山南路中南大学粉末冶金研究院 邮编:410083 电话:0731-88877163 邮箱:pmbjb@csu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn