首页   |   期刊介绍   |   编 委 会   |   投稿指南   |   出版法规   |   出版伦理   |   期刊订阅   |   联系我们   |   留言板   |   广告合作   |   ENGLISH
工艺技术

冷冻铸造-压力浸渗制备仿贝壳层状结构Al/Al2O3复合材料及其性能研究

  • 杨立凯 ,
  • 吕博梁 ,
  • 岑俊池 ,
  • 林巧力 ,
  • 石玗
展开
  • 兰州理工大学 省部共建有色金属先进加工与再利用国家重点实验室,兰州 730050

收稿日期: 2024-10-29

  修回日期: 2024-12-16

  网络出版日期: 2025-04-08

基金资助

国家自然科学基金资助项目(52305370); 甘肃省自然科学基金资助项目(24JRRA199); 兰州理工大学红柳优秀青年人才支持计划资助项目

Preparation and properties study of nacre-inspired lamellar Al/Al2O3 composites by freeze casting and pressure infiltration

  • YANG Likai ,
  • LÜ Boliang ,
  • CEN Junchi ,
  • LIN Qiaoli ,
  • SHI Yu
Expand
  • State Key Laboratory of Advanced Processing and Recycling of Nonferrous Metals, Lanzhou University of Technology, Lanzhou 730050, China

Received date: 2024-10-29

  Revised date: 2024-12-16

  Online published: 2025-04-08

摘要

受自然材料如珍珠贝的高性能得益于其独特层状结构的启发,结合仿生学理念,本文通过冷冻铸造-压力浸渗技术制备仿贝壳层状结构Al/Al2O3复合材料。采用扫描电子显微镜和材料试验机研究玄武岩烧结助剂和烧结温度对多孔Al2O3骨架微观结构和抗压强度的影响,采用X射线断层扫描仪观察分析复合材料的微观结构和物相体积分数。结果表明:多孔Al2O3骨架具有孔道与陶瓷交替排列的层状结构。该结构的形成机理依赖于冰晶的定向生长,冰晶在生长过程中将陶瓷颗粒推到两侧,形成定向层状结构。加入玄武岩助烧剂或提高烧结温度,可显著提高陶瓷骨架的体积收缩率和抗压强度。Al/Al2O3界面可以建立化学键合,使熔体与骨架有效复合。Al/Al2O3复合材料具有高致密度,呈现出精细的层状结构,较大程度上实现了仿贝壳结构的设计目标。

本文引用格式

杨立凯 , 吕博梁 , 岑俊池 , 林巧力 , 石玗 . 冷冻铸造-压力浸渗制备仿贝壳层状结构Al/Al2O3复合材料及其性能研究[J]. 粉末冶金材料科学与工程, 2025 , 30(1) : 71 -78 . DOI: 10.19976/j.cnki.43-1448/TF.2024096

Abstract

Drawing inspiration from the high performance of natural materials such as nacres, which derive their advantages from a unique lamellar structure, and combined with the concept of bionics. This study prepared Al/Al2O3 composites with a nacre-inspired lamellar structure using freeze casting and pressure infiltration. The effects of basalt sintering aids and sintering temperature on the microstructure and compressive strength of the porous Al2O3 framework were studied by scanning electron microscope and material testing machine, and the microstructure and phase volume fraction of the composites were observed and analyzed by micro-CT. The results show that the porous Al2O3 framework has a lamellar structure with alternating arrangement of pores and ceramics. The formation mechanism of this structure is attributed to the directional growth of ice crystals, during the growth process, the ice crystals push the ceramic particles to the sides to form the directional lamellar structure. The addition of basalt sintering aids or an increase in sintering temperature can significantly enhance volume shrinkage and compressive strength of ceramic framework. Chemical bonding is established at the Al/Al2O3 interface, which enables the melt and skeleton to be effectively composited. Al/Al2O3 composites feature high densification and show a delicate lamellar structure, largely achieving the design goal of the nacre-inspired structure.

参考文献

[1] 于化顺. 金属基复合材料及其制备技术[M].北京: 化学工业出版社, 2006.
YU Huashun.Metal Matrix Composites and Their Preparation Technology[M].Beijing: Chemical Industry Press, 2006.
[2] MORTENSEN A, LLORCA J.Metal matrix composites[J].Annual Review of Materials Research, 2010, 40(1): 243-270.
[3] CHAWLA N, CHAWLA K K.Metal-matrix composites in ground transportation[J].The Journal of Minerals, Metals & Materials Society, 2006, 58: 67-70.
[4] RITCHIE R O.The conflicts between strength and toughness[J].Nature Materials, 2011, 10(11): 817-822.
[5] 张荻, 张国定, 李志强. 金属基复合材料的现状与发展趋势[J].中国材料进展, 2010, 29(4): 1-7.
ZHANG Di, ZHANG Guoding, LI Zhiqiang.The current state and trend of metal matrix composites[J].Materials China, 2010, 29(4): 1-7.
[6] 耿林, 范国华. 金属基复合材料的构型强韧化研究进展[J].中国材料进展, 2016, 35(9): 686-693.
GENG Lin, FAN Guohua.Progress on strengthening and toughening mechanism for metal matrix composites by configuration design[J].Materials China, 2016, 35(9): 686-693.
[7] LIU Z, MEYERS M A, ZHANG Z, et al.Functional gradients and heterogeneities in biological materials: design principles, functions, and bioinspired applications[J].Progress in Materials Science, 2017, 88: 467-498.
[8] HUANG W, RESTREPO D, JUNG J Y, et al.Multiscale toughening mechanisms in biological materials and bioinspired designs[J].Advanced Materials, 2019, 31(43): 1901561.
[9] MEYERS M A, CHEN P Y, LOPEZ M I, et al.Biological materials: a materials science approach[J].Journal of the Mechanical Behavior of Biomedical Materials, 2011, 4(5): 626-657.
[10] MEYERS M A, CHEN P Y, LIN A Y M, et al. Biological materials: structure and mechanical properties[J].Progress in Materials Science, 2008, 53(1): 1-206.
[11] SUN J, BHUSHAN B.Hierarchical structure and mechanical properties of nacre: a review[J].RSC Advances, 2012, 2(20): 7617-7632.
[12] BONDERER L J, STUDART A R, GAUCKLER L J.Bioinspired design and assembly of platelet reinforced polymer films[J].Science, 2008, 319(5866): 1069-1073.
[13] HUANG J, DARYADEL S, MINARY-JOLANDAN M.Low-cost manufacturing of metal-ceramic composites through electrodeposition of metal into ceramic scaffold[J].ACS Applied Materials & Interfaces, 2019, 11(4): 4364-4372.
[14] WALTHER A, BJURHAGER I, MALHO J M, et al.Large-area, lightweight and thick biomimetic composites with superior material properties via fast, economic, and green pathways[J].Nano Letters, 2010, 10(8): 2742-2748.
[15] 张勋, 刘书海, 肖华平. 冷冻铸造技术制备仿贝壳层状结构陶瓷复合材料研究进展[J].材料导报, 2017, 31(13): 99-112.
ZHANG Xun, LIU Shuhai, XIAO Huaping.Applying freeze-casting technique to fabrication of nacre-like lamellar structured ceramic composites: a state-of-the-art review[J].Materials Reports, 2017, 31(13): 99-112.
[16] CLEGG W J, KENDALL K, ALFORD N M N, et al. A simple way to make tough ceramics[J].Nature, 1990, 347(6292): 455-457.
[17] FAN G L, XU R, TAN Z Q, et al.Development of flake powder metallurgy in fabricating metal matrix composites: a review[J].Acta Metallurgica Sinica (English Letters), 2014, 27: 806-815.
[18] 王雷, 尹华, 徐润, 等. 原位碳纳米管/铝基复合材料的制备与力学性能[J].粉末冶金材料科学与工程, 2019, 24(1): 63-68.
WANG Lei, YIN Hua, XU Run, et al.Preparation and mechanical properties of in-situ carbon nanotube/aluminum composites[J].Materials Science and Engineering of Powder Metallurgy, 2019, 24(1): 63-68.
[19] WILKERSON R P. Biomimetic “Nacre-Like”, Metal- Compliant-Phase Ceramics Produced via Coextrusion[M].Berkeley: University of California, 2018.
[20] LI G J, LI Y S, YANG L K, et al.Strong hybrid cellular/lamellar ceramic/polymer composites via emulsification freeze casting[J].Journal of the American Ceramic Society, 2025, 108(2): e20164.
[21] WU J P, WANG Y, ZHANG J S, et al.A lightweight aramid-based structural composite with ultralow thermal conductivity and high-impact force dissipation[J].Matter, 2022, 5(7): 2265-2284.
[22] HONG L Y, GUO X, LI G J, et al.Multi-directional freeze-casting of interpenetrating phase composites with multi-aligned structure, nearly isotropy, high performance[J].Materials & Design, 2024, 244: 113172.
[23] YANG L K, JIN Q, GUO R F, et al.Exploiting bio-inspired high energy-absorbent metal/ceramic composites through emulsion-ice-templating and melt infiltration[J].Materialia, 2020, 14: 100884.
[24] DEVILLE S.Freeze-casting of porous ceramics: a review of current achievements and issues[J].Advanced Engineering Materials, 2008, 10(3): 155-169.
[25] MOLINA J M, VOYTOVYCH R, LOUIS E, et al.The surface tension of liquid aluminium in high vacuum: the role of surface condition[J].International Journal of Adhesion and Adhesives, 2007, 27(5): 394-401.
[26] GUO R F, GUO N, SHEN P, et al.Effects of ceramic lamellae compactness and interfacial reaction on the mechanical properties of nacre-inspired Al/Al2O3-ZrO2 composites[J].Materials Science and Engineering A, 2018, 718: 326-334.
[27] FUJII H, NAKAE H, OKADA K.Interfacial reaction wetting in the boron nitride/molten aluminum system[J].Acta Metallurgica et Materialia, 1993, 41(10): 2963-2971.
[28] EUSTATHOPOULOS N, NICHOLAS M G, DREVET B.Wettability at High Temperatures[M].Oxford: Elsevier, 1999.
文章导航

/

版权所有 © 《粉末冶金材料科学与工程》编辑部
地址:长沙市麓山南路中南大学粉末冶金研究院 邮编:410083 电话:0731-88877163 邮箱:pmbjb@csu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn