[1] LEWIS N S. Research opportunities to advance solar energy utilization[J].Science, 2016, 351(6271): aad1920.
[2] 李立明. 太阳能选择性吸收涂层的研究进展[J].粉末冶金材料科学与工程, 2009, 14(1): 7-10.
LI Liming.Research progress of solar energy selective absorbing coatings[J].Materials Science and Engineering of Powder Metallurgy, 2009, 14(1): 7-10.
[3] SUMAN S, KHAN M K, PATHAK M.Performance enhancement of solar collectors: a review[J].Renewable and Sustainable Energy Reviews, 2015, 49: 192-210.
[4] 曹宁宁, 卢松涛, 姚锐, 等. 太阳光谱选择性吸收涂层[J].化学进展, 2019, 31(4): 597-612.
CAO Ningning, LU Songtao, YAO Rui, et al.Solar spectrum selective absorbing coatings[J].Progress in Chemistry, 2019, 31(4): 597-612.
[5] KUMAR K K P, ATCHUTA S R, PRASAD M S, et al. Review on selective absorber coatings: a catalyst for enhanced solar energy conversion efficiency[J].Solar Energy Materials and Solar Cells, 2024, 277: 113080.
[6] WU S, CHENG C H, HSIAO Y J, et al.Fe2O3 films on stainless steel for solar absorbers[J].Renewable and Sustainable Energy Reviews, 2016, 58: 574-580.
[7] GAO X, JIANG E, PIKE A, et al.FeMnNiAlCr high-entropy alloys with high-efficiency surface oxide solar absorbers for concentrating solar power systems[J].High Entropy Alloys & Materials, 2024, 2(1): 97-109.
[8] WANG X, LEE E, XU C, et al.High-efficiency, air-stable manganese-iron oxide nanoparticle-pigmented solar selective absorber coatings toward concentrating solar power systems operating at 750 ℃[J].Materials Today Energy, 2021, 19: 100609.
[9] LIU Y Y, CHEN Z, CHEN Y Z, et al.Effect of Al content on high temperature oxidation resistance of AlxCoCrCuFeNi high entropy alloys (x=0, 0.5, 1, 1.5, 2)[J].Vacuum, 2019, 169: 108837.
[10] WANG F, SONG M, ELKOT M N, et al.Shearing brittle intermetallics enhances cryogenic strength and ductility of steels[J].Science, 2024, 384(6699): 1017-1022.
[11] WANG Z W, LU W J, AN F C, et al.High stress twinning in a compositionally complex steel of very high stacking fault energy[J].Nature Communications, 2022, 13(1): 3598.
[12] WANG Z W, LU W J, ZHAO H, et al. Ultrastrong lightweight compositionally complex steels via dual-nanoprecipitation[J].Science Advances, 2020, 6(46): eaba9543.
[13] BUKAUSKAS V, KACIULIS S, MEZZI A, et al.Effect of substrate temperature on the arrangement of ultra-thin TiO2 films grown by a dc-magnetron sputtering deposition[J].Thin Solid Films, 2015, 585: 5-12.
[14] KUMAR S K, MURUGESAN S, SURESH S.Anodization assisted preparation of diverse nanostructured copper oxide films for solar selective absorber[J].Optical Materials, 2023, 135: 113304.
[15] FABBRI L, SUN Y K, PICIOLLO E, et al.Electrodeposition of white bronzes on the way to CZTS absorber films[J].Journal of The Electrochemical Society, 2020, 167: 022513.
[16] WU M Z, DOUGLASS D L.The selective solar absorption of oxide films grown in situ on Fe-, Ni-, and Cu-base alloys[J].Solar Energy Materials, 1988, 17(2): 119-136.
[17] DOUGLASS D L, PETTIT R B.The selective solar absorptance of in situ-grown oxide films on metals[J].Solar Energy Materials, 1981, 4(4): 383-402.
[18] 李雨洁, 章飞, 陈梅洁, 等. 原位氧化FeNiMnAlCrC高熵合金的光热转换性能[J].中国有色金属学报, 2024, 34(11): 3595-3607.
LI Yujie, ZHANG Fei, CHEN Meijie, et al.Photothermal conversion performance of in situ oxidizing FeNiMnAlCrC high entropy alloy[J].The Chinese Journal of Nonferrous Metals, 2024, 34(11): 3595-3607.
[19] ZHANG F, CHEN M, YAN H, et al.In situ oxidizing commercial alloy to achieve selective solar absorption with high-temperature stability[J].ACS Applied Energy Materials, 2023, 6(21): 10943-10950.
[20] RAO A S, SAKTHIVEL S.A highly thermally stable Mn-Cu-Fe composite oxide based solar selective absorber layer with low thermal loss at high temperature[J].Journal of Alloys and Compounds, 2015, 644: 906-915.
[21] TIAN Y P, LIU X J, CARATENUTO A, et al.A new strategy towards spectral selectivity: selective leaching alloy to achieve selective plasmonic solar absorption and infrared suppression[J].Nano Energy, 2022, 92: 106717.
[22] QI C Y, LIU Q, DONG Y C, et al.Quenching-induced surface reconstruction of FeMn2O4 for promoted oxygen evolution reaction[J].Journal of Alloys and Compounds, 2023, 967: 171754.
[23] LIU X R, SHEN X X, CHEN T T, et al.The spinel MnFe2O4 grown in biomass-derived porous carbons materials for high-performance cathode materials of aqueous zinc-ion batteries[J].Journal of Alloys and Compounds, 2022, 904: 164002.
[24] BOSCH J, MARTIN U, APERADOR W, et al.Corrosion behavior of high-Mn austenitic Fe-Mn-Al-Cr-C steels in NaCl and NaOH solutions[J].Materials, 2021, 14(2): 425.
[25] AGUSTIANINGRUM M P, LATIEF F H, PARK N, et al.Thermal oxidation characteristics of Fex(CoCrMnNi)100-x medium and high-entropy alloys[J].Intermetallics, 2020, 120: 106757.
[26] WANG X L, WU X F, YUAN L, et al.Solar selective absorbers with foamed nanostructure prepared by hydrothermal method on stainless steel[J].Solar Energy Materials and Solar Cells, 2016, 146: 99-106.
[27] 朱敏, 金鑫焱, 陈光. FeMnAlC TWIP钢加热过程中的氧化行为GD-OES研究[J].钢铁研究学报, 2022, 34(8): 807-814.
ZHU Min, JIN Xinyan, CHEN Guang.GD-OES study on oxidation behavior of FeMnAlC TWIP steel sheets during heating[J].Journal of Iron and Steel Research, 2022, 34(8): 807-814.
[28] 李铁藩. 金属高温氧化和热腐蚀[M].北京: 化学工业出版社, 2003: 106-109.
LI Tiefan.High Temperature Oxidation and Hot Corrosion of Metals[M].Beijing: Chemical Industry Press, 2003: 106-109.
[29] 周承商, 刘煌, 刘咏, 等. 金属氢化物热能储存及其研究进展[J].粉末冶金材料科学与工程, 2019, 24(5): 391-399.
ZHOU Chengshang, LIU Huang, LIU Yong, et al.Metal hydride thermal energy storage and its research progress[J].Materials Science and Engineering of Powder Metallurgy, 2019, 24(5): 391-399.
[30] PÉREZ P, PÉREZ F J, GÓMEZ C, et al. Oxidation behaviour of an austenitic Fe-30Mn-5Al-0.5C alloy[J].Corrosion Science, 2002, 44(1): 113-127.
[31] HUANG Z Y, JIANG Y S, HOU A L, et al.Rietveld refinement, microstructure and high-temperature oxidation characteristics of low-density high manganese steels[J].Journal of Materials Science & Technology, 2017, 33(12): 1531-1539.
[32] YANG J, WANG Y N, RUAN X M, et al.Effects of manganese content on solidification structures, thermal properties, and phase transformation characteristics in Fe-Mn-Al-C steels[J].Metallurgical and Materials Transactions B, 2015, 46(3): 1365-1375.
[33] 唐鋆磊, 王莹莹, 乔子祺, 等. 一种用于中低温SOFC连接体的复合涂层及其制备方法: CN202211014519.6[P].2022-11-29.
TANG Yunlei, WANG Yingying, QIAO Ziqi, et al. A composite coating for intermediate and low temperature SOFC interconnects and its preparation method: CN202211014519.6[P].2022-11-29.
[34] 陈莹莹. Ti3SiC2/Al2O3层状复合材料的制备与性能研究[D].济南: 济南大学, 2022.
CHEN Yingying.Research on the preparation and properties of Ti3SiC2/Al2O3 layered composite materials[D].Jinan: University of Jinan, 2022.
[35] ZHANG N Q, ZHU Z L, YUE G Q, et al.The oxidation behaviour of an austenitic steel in deaerated supercritical water at 600-700 ℃[J].Materials Characterization, 2017, 132: 119-125.
[36] RASHMI S K, NAIK H S B, JAYADEVAPPA H, et al. Influence of Sm3+ ions on structural, optical and solar light driven photocatalytic activity of spinel MnFe2O4 nanoparticles[J].Journal of Solid State Chemistry, 2017, 255: 178-192.
[37] ZHANG H Y, JI Z X, XIA T, et al.Use of metal oxide nanoparticle band gap to develop a predictive paradigm for oxidative stress and acute pulmonary inflammation[J].ACS Nano, 2012, 6(5): 4349-4368.
[38] ŠIMŠA Z, ŠIROKÝ P, LUKEŠ F, et al. Optical properties of manganese ferrites[J].Physica Status Solidi-Basic Solid State Physics, 1979, 96(1): 137-144.
[39] GUO Z W, LIU Y L, YU B, et al.Self-supporting magnetic nanoporous silver-nickel films with broadband light absorption for efficient interfacial solar steam generation[J].Chemical Engineering Journal, 2024, 501: 157511.
[40] ZHOU Q, LI H, LI D, et al.A graphene assembled porous fiber-based Janus membrane for highly effective solar steam generation[J].Journal of Colloid and Interface Science, 2021, 592: 77-86.
[41] FAN Q, WU L, LIANG Y, et al.The role of micro-nano pores in interfacial solar evaporation systems: a review[J].Applied Energy, 2021, 292: 116871.