首页   |   期刊介绍   |   编 委 会   |   投稿指南   |   出版法规   |   出版伦理   |   期刊订阅   |   联系我们   |   留言板   |   广告合作   |   ENGLISH
工艺技术

ZrC-AlN强化Mo基复合材料的制备和性能

  • 严春雷 ,
  • 宋东及 ,
  • 任俊业
展开
  • 中国工程物理研究院 材料研究所,绵阳 621907

收稿日期: 2024-10-16

  修回日期: 2025-01-09

  网络出版日期: 2025-04-08

基金资助

四川省天府峨眉计划青年人才基金资助项目(RCEM202101); 院长基金资助项目(PY202203)

Preparation and properties of ZrC-AlN reinforced Mo-based composites

  • YAN Chunlei ,
  • SONG Dongji ,
  • REN Junye
Expand
  • Institute of Materials, China Academy of Engineering Physics, Mianyang 621907, China

Received date: 2024-10-16

  Revised date: 2025-01-09

  Online published: 2025-04-08

摘要

针对新一代耐高温、抗辐照、抗氧化、高强韧热结构材料的应用需求,通过三维干法球磨,冷等静压制坯,高温氩气气氛烧结制备不同ZrC-AlN含量的Mo基复合材料。采用扫描电子显微镜、X射线衍射仪和同步热分析仪等,研究陶瓷含量对复合粉末分散性以及复合材料微观结构、氧化行为和性能的影响。结果表明:通过三维干法球磨可获得均匀分散的金属陶瓷复合粉末。从室温到1 200 ℃氧化后,随陶瓷相含量增加,复合材料的质量损失率大幅降低,抗氧化陶瓷相的引入改善了复合材料的抗氧化性能。陶瓷相引入后,复合材料的抗压强度大幅升高,最高达1 315.8 MPa,相比纯Mo提高约一倍,这是因为硬度高、模量大、不易压缩的陶瓷相增强了复合材料的抗压性能。然而,闭孔、界面反应、各物相自身力学性能的综合作用使复合材料抗弯强度降低。

本文引用格式

严春雷 , 宋东及 , 任俊业 . ZrC-AlN强化Mo基复合材料的制备和性能[J]. 粉末冶金材料科学与工程, 2025 , 30(1) : 42 -50 . DOI: 10.19976/j.cnki.43-1448/TF.2024087

Abstract

In order to meet the application needs of a new generation thermal structure materials of high temperature resistance, anti-radiation, oxidation resistance, and high strength and toughness, Mo-based composites with different ZrC-AlN contents were prepared by three-dimensional dry ball milling, cold isostatic pressing, and high-temperature argon atmosphere sintering. The influences of ceramic content on the dispersion of composite powders, as well as the microstructures, oxidation behavior, and properties of composites, were studied using scanning electron microscope, X-ray diffractometer, and simultaneous thermal analyzer. The results indicate that uniformly dispersed metal ceramic composite powders can be obtained through three-dimensional dry ball milling. After oxidation from room temperature to 1 200 ℃, the mass loss rate of the composites decreases greatly with the increase of ceramic phase content, indicating the improved oxidation resistance of composites by introducing antioxidant ceramic phases. When introducing ceramic phase, the compressive strength of the composites increase greatly with the maximum of 1 315.8 MPa, increasing by about one time compared to pure Mo, it’s because the ceramic phases with high hardness, high modulus, and low compressibility which enhance the compressive property of the composites. However, the bending strength of composites decrease, which is a comprehensive result of closed pores, interface reactions, and the mechanical properties of each phase itself.

参考文献

[1] 封范. 碳化物对Mo的力学行为和高温抗氧化行为的影响[D].长沙: 中南大学, 2012.
FENG Fan.Mechanical behavior and high temperature oxidation behavior of carbide particle reinforced Mo alloy[D].Changsha: Central South University, 2012.
[2] JING K, LIU R, XIE Z M, et al.Excellent high-temperature strength and ductility of the ZrC nanoparticles dispersed molybdenum[J].Acta Materialia, 2022, 227: 117725.
[3] CHENG P M, ZHANG G J, ZHANG J Y, et al.Coupling effect of intergranular and intragranular particles on ductile fracture of Mo-La2O3 alloys[J].Materials Science and Engineering A, 2015, 640: 320-329.
[4] GAN J N, GONG Q M, JIANG Y Q, et al.Microstructure and high-temperature mechanical properties of second-phase enhanced Mo-La2O3-ZrC alloys post-treated by cross rolling[J].Journal of Alloys and Compounds, 2019, 796: 167-175.
[5] 胡雯. AlN颗粒增强钼基复合材料的制备及其结构与性能的研究[D].武汉: 武汉理工大学, 2015.
HU Wen.Preparation of AlN/Mo composites and study of its structure and properties[D].Wuhan: Wuhan University of Technology, 2015.
[6] WANG L, SUN J, LIU G, et al.Influences of annealing temperature on microstructure and mechanical properties of Mo-La2O3[J].International Journal of Refractory Metals and Hard Materials, 2011, 29(4): 522-527.
[7] COCKERAM B V, BYUN T S, LEONARD K J, et al.Post-irradiation fracture toughness of unalloyed molybdenum, ODS molybdenum, and TZM molybdenum following irradiation at 244 ℃ to 507 ℃[J].Journal of Nuclear Materials, 2013, 440: 382-413.
[8] HU W Q, SUN T, LIU C X, et al.Refined microstructure and enhanced mechanical properties in Mo-Y2O3 alloys prepared by freeze-drying method and subsequent low temperature sintering[J].Journal of Materials Science & Technology, 2021, 88: 36-44.
[9] YAO L Y, WEI S Z, ZHOU Y C, et al.Preparation and characterization of Mo/ZrO2-Y2O3 composites[J].International Journal of Refractory Metals and Hard Materials, 2018, 75: 202-210.
[10] HU W Q, DU Z F, DONG Z Z, et al.The synthesis of TiC dispersed strengthened Mo alloy by freeze-drying technology and subsequent low temperature sintering[J].Scripta Materialia, 2021, 198: 113831.
[11] WANG Y, WANG D Z, LIU H Y, et al.Preparation and characterization of sintered molybdenum doped with MoSi2/La2O3/Y2O3 composite particle[J].Materials Science and Engineering A, 2012, 558: 497-501.
[12] 熊刚, 成会朝, 范景莲, 等. Ti含量对Mo-10W-TiC 合金组织与性能的影响[J].粉末冶金材料科学与工程, 2018, 23(5): 454-459.
XIONG Gang, CHENG Huichao, FAN Jinglian, et al.Effects of TiC content on property and microstructure of Mo-10W-TiC alloy[J].Materials Science and Engineering of Powder Metallurgy, 2018, 23(5): 454-459.
文章导航

/

版权所有 © 《粉末冶金材料科学与工程》编辑部
地址:长沙市麓山南路中南大学粉末冶金研究院 邮编:410083 电话:0731-88877163 邮箱:pmbjb@csu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn