[1] TESTA V, MORELLI S, BOLELLI G, et al.Alternative metallic matrices for WC-based HVOF coatings[J].Surface Coatings Technology, 2020, 402: 126308.
[2] 王三星. 基于激光熔覆技术的轧辊再制造研究[D].秦皇岛: 燕山大学, 2015.
WANG Sanxing.Research on remanufacturing of roll based on laser cladding technology[D].Qinhuangdao: Yanshan University, 2015.
[3] HU Z, LI Y, LU B, et al.Effect of WC content on microstructure and properties of high-speed laser cladding Ni-based coating[J].Optics & Laser Technology, 2022, 155: 108449.
[4] 钟斌, 王攀, 李飞, 等. 感应熔覆技术研究现状及发展[J].精密成形工程, 2023, 15(8): 191-203.
ZHONG Bin, WANG Pan, LI Fei, et al.Current situation and development of induction cladding technology[J].Journal of Netshape Forming Engineering, 2023, 15(8): 191-203.
[5] PADMANABHAM G, RAVI B.Laser materials processing for industrial applications[J].Proceedings of the National Academy of Sciences, India Section A: Physical Sciences, 2018, 88: 359-374.
[6] ZHU L, XUE P, LAN Q, et al.Recent research and development status of laser cladding: a review[J].Optics & Laser Technology, 2021, 138: 106915.
[7] 张艺, 马志凯, 孙铂, 等. 激光熔覆材料的研究现状及发展[J].热加工工艺, 2015, 44(14): 40-44.
ZHANG Yi, MA Zhikai, SUN Bo, et al.Present status and development of material for laser cladding[J].Hot Working Technology, 2015, 44(14): 40-44.
[8] 孙士雷, 赵杰, 袁玮骏, 等. GH4169 镍基高温合金表面加工硬化研究[J].工具技术, 2016, 50(10): 24-27.
SUN Shilei, ZHAO Jie, YUAN Weijun, et al.Study on surface hardening in high speed milling super alloy GH4169[J].Tool Engineering, 2016, 50(10): 24-27.
[9] 迟静, 王淑峰, 李敏, 等. WC与TiC复合增强镍基涂层的组织和性能[J].中国表面工程, 2021, 34(1): 85-96.
CHI Jing, WANG Shufeng, LI Min, et al.Microstructure and properties of WC and TiC composite reinforcement Ni-based coatings[J].China Surface Engineering, 2021, 34(1): 85-96.
[10] MAS-GUINDAL M J, CONTRERAS L, TURRILLAS X, et al. Self-propagating high-temperature synthesis of TiC-WC composite materials[J].Journal of Alloys Compounds, 2006, 419(1/2): 227-233.
[11] TANG B H, TAN Y F, XU T, et al.Effects of TiB2 particles content on microstructure, mechanical properties and tribological properties of Ni-based composite coatings reinforced with TiB2 particles by laser cladding[J].Coatings, 2020, 10(9): 813.
[12] 袁涛, 蔡养川, 罗震, 等. Al2O3陶瓷颗粒对镍基合金涂层耐磨性能的影响[J].上海交通大学学报, 2016, 50(10): 1635-1639.
YUAN Tao, CAI Yangchuan, LUO Zhen, et al.Effect of Al2O3 composite ceramic reinforcement on wear behavior of laser cladding Ni-based alloys coatings[J].Journal of Shanghai Jiaotong University,2016, 50(10): 1635-1639.
[13] HUEBNER J, RUTKOWSKI P, KATA D, et al.Microstructural and mechanical study of Inconel 625-tungsten carbide composite coatings obtained by powder laser cladding[J].Archives of Metallurgy and Materials, 2017, 62(2): 529-536.
[14] 范福杰. 激光熔覆718高温合金涂层的研究[D].兰州: 兰州理工大学, 2018.
FAN Fujie.Research on laser cladding coating of 718 superalloy[D].Lanzhou: Lanzhou University of Technology, 2018.
[15] SUN X, REN X H, QIANG W J, et al.Microstructure and properties of Inconel 718 matrix composite coatings reinforced with submicron TiC particles prepared by laser cladding[J].Applied Surface Science, 2023, 637: 157920.
[16] SUI S, TAN H, CHEN J, et al.The influence of Laves phases on the room temperature tensile properties of Inconel 718 fabricated by powder feeding laser additive manufacturing[J].Acta Materialia, 2019, 164: 413-427.
[17] LIU F C, LYU F Y, LIU F G, et al.Laves phase control of inconel 718 superalloy fabricated by laser direct energy deposition via δ aging and solution treatment[J].Journal of Materials Research and Technology, 2020, 9(5): 9753-9765.
[18] KUMAR V P, JEBARAJ A V.Influence of double aging heat treatment on phase transformation and dimensional accuracy of Inconel 718 alloy made through laser-based additive manufacturing[J].Transactions of the Indian Institute of Metals, 2021, 74(12): 3103-3117.
[19] 石晨晓, 刘元富, 李勇, 等. 等离子熔化沉积TiC增强Inconel 718基原位自生复合材料显微组织及高温耐磨性[J].稀有金属材料与工程, 2019, 48(5): 1497-1504.
SHI Chenxiao, LIU Yuanfu, LI Yong, et al.Microstructure and high temperature wear resistance of TiC/Inconel 718 composites in-situ synthesized by plasma melting deposition technique[J].Rare Metal Materials and Engineering, 2019, 48(5): 1497-1504.
[20] MUVVALA G, KARMAKAR D P, NATH A K.Online assessment of TiC decomposition in laser cladding of metal matrix composite coating[J].Materials Design, 2017, 121: 310-320.
[21] ZHANG J D, MENG G R, ZHU L D, et al.Formation mechanism and mechanical properties of TiC reinforced Inconel 718 composite coatings by laser cladding on H13 steel[J].The International Journal of Advanced Manufacturing Technology, 2022, 121(5/6): 3597-3611.
[22] ZHANG Z H, WANG X, ZHANG Q Q, et al.Fabrication of Fe-based composite coatings reinforced by TiC particles and its microstructure and wear resistance of 40Cr gear steel by low energy pulsed laser cladding[J].Optics & Laser Technology, 2019, 119: 105622.
[23] LEI Y W, SUN R L, TANG Y, et al.Numerical simulation of temperature distribution and TiC growth kinetics for high power laser clad TiC/NiCrBSiC composite coatings[J].Optics & Laser Technology, 2012, 44(4): 1141-1147.
[24] ZHANG J F, ANDRÄ H, ZHANG X X, et al.An enhanced finite element model considering multi strengthening and damage mechanisms in particle reinforced metal matrix composites[J].Composite Structures, 2019, 226: 111281.
[25] SAHOO B P, DAS D, CHAUBEY A K.Strengthening mechanisms and modelling of mechanical properties of submicron-TiB2 particulate reinforced Al 7075 metal matrix composites[J].Materials Science and Engineering A, 2021, 825: 141873.
[26] CAI Y C, ZHU L S, CUI Y, et al.Fracture and wear mechanisms of FeMnCrNiCo + x(TiC) composite high- entropy alloy cladding layers[J].Applied Surface Science, 2021, 543: 148794.
[27] GAO Z M, NIU Z M, GAO Z T, et al.Microstructure and wear behavior of in-situ synthesized TiC-reinforced CoCrFeNi high entropy alloy prepared by laser cladding[J].Applied Surface Science, 2024, 670: 160720.
[28] LI X F, FENG Y H, LIU B, et al.Influence of NbC particles on microstructure and mechanical properties of AlCoCrFeNi high-entropy alloy coatings prepared by laser cladding[J].Journal of Alloys Compounds, 2019, 788: 485-494.