首页   |   期刊介绍   |   编 委 会   |   投稿指南   |   出版法规   |   出版伦理   |   期刊订阅   |   联系我们   |   留言板   |   广告合作   |   ENGLISH
工艺技术

WC含量对钴基合金复合熔覆层组织结构与性能的影响

  • 粟亮 ,
  • 仝永刚 ,
  • 胡永乐 ,
  • 方靖中 ,
  • 王开明 ,
  • 伍鹏飞
展开
  • 长沙理工大学 汽车与机械工程学院, 长沙 410114

收稿日期: 2024-08-30

  修回日期: 2024-11-19

  网络出版日期: 2025-02-05

基金资助

湖南省科技创新计划资助项目(2021RC3096);湖南省教育厅科学研究项目(23A0264);湖南省自然科学基金资助项目(2023JJ30038)

Effects of WC content on microstructure and properties of Co-based alloy composite cladding layers

  • SU Liang ,
  • TONG Yonggang ,
  • HU Yongle ,
  • FANG Jingzhong ,
  • WANG Kaiming ,
  • WU Pengfei
Expand
  • College of Automotive and Mechanical Engineering, Changsha University of Science and Technology, Changsha 410114, China

Received date: 2024-08-30

  Revised date: 2024-11-19

  Online published: 2025-02-05

摘要

为探究WC含量对Co基合金复合熔覆层组织结构及高温摩擦行为的影响规律,采用等离子熔覆工艺制备不同WC含量WC/Co基合金复合熔覆层,系统研究复合熔覆层的显微组织、硬度和摩擦磨损性能。结果表明:WC添加量较低时,熔覆层显微组织由胞状晶区、线状晶区和树枝晶区组成。随WC含量增加,复合熔覆层内部形成大量形状不规则且细小的(Co,W)C碳化物以及未溶解的WC颗粒,显著提高了复合熔覆层的硬度和摩擦磨损性能。复合熔覆层的显微硬度随WC含量增加而提高,w(WC)=40%的复合熔覆层硬度(HV)最高,达到752,较未添加WC的熔覆层提升了76%。WC强化复合熔覆层具有优异的耐磨性,其摩擦因数先减小后增大再减小,体积磨损量随WC含量的增加先减小后增大,w(WC)=20%的熔覆层具有最优的高温磨损性能,600 ℃的平均摩擦因数为0.235,体积磨损量为25.13×108 μm3,磨损形式为氧化磨损与疲劳磨损。

本文引用格式

粟亮 , 仝永刚 , 胡永乐 , 方靖中 , 王开明 , 伍鹏飞 . WC含量对钴基合金复合熔覆层组织结构与性能的影响[J]. 粉末冶金材料科学与工程, 2024 , 29(6) : 486 -495 . DOI: 10.19976/j.cnki.43-1448/TF.2024073

Abstract

To explore the effects of WC content on the microstructures and high temperature tribological behavior of Co-based alloy composite cladding layers, WC/Co-based alloy cladding layers with different WC contents were prepared by plasma cladding process. The microstructures, hardness, and friction and wear properties of the composite cladding layers were systematically investigated. The results show that the microstructure of the cladding layer is composed of cellular, columnar, and dendritic crystal zones when the content of WC is low. As the WC content increasing, a large number of irregularly shaped fine (Co,W)C carbides and undissolved WC particles are formed inside the composite cladding layer, which significantly improves the hardness and friction and wear properties of the composite cladding layers. The microhardness of the composite cladding layer is enhanced with the increase of WC content, showing the best hardness of 752 with the WC mass fraction of 40%, which is 76% higher than that of the cladding layer without WC. The WC reinforced composite cladding layers exhibit excellent wear resistance. The friction factor decreases first then increases, and then decreases again, and the wear volume loss decrease firstly and then increase with the increase of WC content. The cladding layer with WC mass fraction of 20% shows the best high temperature wear performance, of which the average friction factor at 600 ℃ is 0.235, and the wear volume loss is 25.13×108 μm3, the wear forms are oxidative wear and fatigue wear.

参考文献

[1] 肖明颖, 范振红. 超高速激光熔覆技术研究现状及发展展望[J]. 粉末冶金材料科学与工程, 2024, 29(3): 151-161.
XIAO mingying, FAN zhenhong. Research status and development prospect of ultra-high speed laser cladding technology[J]. Materials Science and Engineering of Powder Metallurgy, 2024, 29(3): 151-161.
[2] SATHISH C H, RAVIKUMA B N, ANAND K, et al.Elevated temperature fretting wear behavior of cobalt-based alloys[J]. Journal of Tribology, 2016, 138(3): 031601.
[3] DING Y P, LIU R, ZHANG X Z, et al.Study of carbide precipitation in two cobalt-based alloys with distinct chromium and tungsten contents[J]. Journal of Materials Engineering and Performance, 2021, 30(8): 5962-5973.
[4] 吕松涛, 苏义祥, 尹章轩, 等. 烧结温度和保温时间对钴基合金组织与性能的影响[J]. 铸造技术, 2019, 40(3): 243-245.
LÜ Songtao, SU Yixiang, YIN Zhangxuan, et al.Effect of sintering temperature and holding time on microstructure and properties of cobalt-based alloys[J]. Casting Technology, 2019, 40(3): 243-245.
[5] CARLO M, CHIARA C, ANDRES S, et al.Comparison of the combined oxidation and sulphidation behavior of nickel-and cobalt-based alloys at high temperature[J]. Journal of Materials Research and Technology, 2020, 9(6): 15679-15692.
[6] ILANLOU M, RAZAVI R S, HAGHIGHAT S, et al.Multi-track laser metal deposition of Stellite6 on martensitic stainless steel: geometry optimization and defects suppression[J]. Journal of Manufacturing Processes, 2023, 86(1): 177-186.
[7] KUSMOKO A, DUNNE D, LI H, et al. Laser cladding of stainless steel substrates with Stellite 6[J]. Materials Science Forum, 2013, 773/774: 573-589.
[8] YAO J H, LI Z H, LI B, et al.Characteristics and bonding behavior of Stellite 6 alloy coating processed with supersonic laser deposition[J]. Journal of Alloys and Compounds, 2016, 661: 526-534.
[9] FANG Y C, CUI X F, CAI Z B, et al.Influence of La2O3 addition on nano indentation hardness and residual stress of Stellite 6 coating prepared by plasma cladding[J]. Journal of Rare Earths, 2018, 36(8): 873-878.
[10] 张晓东, 揭晓华, 曾招余波, 等. 激光熔覆WC/Co-Cr合金涂层的组织及耐磨性[J]. 金属热处理, 2014, 39(8): 53-56.
ZHANG Xiaodong, JIE Xiaohua, ZENG Zhaoyubo, et al.Organisation and wear resistance of laser clad WC/Co-Cr alloy coatings[J]. Heat Treatment of Metals, 2014, 39(8): 53-56.
[11] NA J, YANG Y Q, LUO X, et al.First-principles calculation of W/WC interface: atomic structure, stability and electronic properties[J]. Applied Surface Science, 2015, 324: 205-211.
[12] 何波, 庄家良, 兰姣姣, 等. 激光熔覆碳化钨/钴基合金复合涂层的组织与耐磨性能[J]. 应用激光, 2017, 37(3): 314-318.
HE Bo, ZHUANG Jialiang, LAN Jiaojiao, et al.Microstructure and wear resistance of laser cladding tungsten carbide/cobalt-based alloy composite coating[J]. Applied Laser, 2017, 37(3): 314-318.
[13] 潘邻, 高万振, 潘春旭, 等. 碳化钨对钴基合金激光熔覆复合涂层组织、微区成分及硬度的影响[J]. 材料热处理学报, 2010, 31(10): 129-135.
PAN Lin, GAO Wanzhen, PAN Chunxu, et al.The effect of tungsten carbide on the microstructure, micro-area composition and hardness of laser cladding composite coating of cobalt-based alloy[J]. Transactions of Materials and Heat Treatment, 2010, 31(10): 129-135.
[14] 李春燕, 寇生中, 赵燕春, 等. 钛合金表面激光熔覆Co-WC复合涂层的组织及力学性能[J]. 功能材料, 2015, 46(7): 7025-7029.
LI Chunyan, KOU Shengzhong, ZHAO Yanchun, et al.Microstructure and mechanical properties of laser cladding Co-WC composite coating on titanium alloy surface[J]. Journal of Functional Materials, 2015, 46(7): 7025-7029.
[15] LÜ N, YUE H T, GUO C H, et al.A comparative investigation on the effects of reinforcement phase addition methods on laser melting deposited WC/Co coatings[J]. Journal of Manufacturing Processes, 2024, 129: 134-146.
[16] 张亮. 激光熔覆钴基合金组织及性能研究[D]. 太原: 太原科技大学, 2023.
ZHANG Liang.Microstructure and properties of laser cladding cobalt-based alloy[D]. Taiyuan: Taiyuan University of Science and Technology, 2023.
[17] 刘颖波. 45钢表面激光熔覆Stellite 6/WC梯度复合涂层工艺、组织与性能研究[D]. 兰州: 兰州理工大学, 2023.
LIU Yingbo.Research on the technology and microstructure and properties of Stellite 6/WC gradient composite coatings by laser cladding on the surface of 45 steel[D]. Lanzhou: Lanzhou University of Technology, 2023.
[18] 顾凤麟. SiC, WC对钴基合金等离子喷焊层组织和性能的影响[D]. 马鞍山: 安徽工业大学, 2014.
GU Fenglin.Effect of SiC and WC on microstructure and properties of cobalt-based alloy plasma spray welding layer[D]. Ma’anshan: Anhui University of Technology, 2014.
[19] ZAFAR S, SHARMA A K, et al.Microstructure and wear performance of heat treated WC-12Co microwave clad[J]. Vacuum, 2016, 131: 213-222.
[20] 于淞百, 蒋豪丽, 闵凡路, 等. 超细WC和细WC/Co添加对WC-10Co硬质合金微观结构与力学性能的影响[J]. 材料工程, 2023, 51(7): 136-145.
YU Songbai, JIANG Haoli, MIN Fanlu, et al.Effects of ultrafine WC and fine WC/Co additions on the microstructure and mechanical properties of WC-10Co cemented carbides[J]. Journal of Material Engineering, 2023, 51(7): 136-145.
[21] WANG X H, HAN F, QU S Y, et al.Microstructure of the Fe-based hard facing layers reinforced by TiC-VC-Mo2C particles[J]. Surface and Coatings Technology, 2008, 202(8): 1502-1509.
文章导航

/

版权所有 © 《粉末冶金材料科学与工程》编辑部
地址:长沙市麓山南路中南大学粉末冶金研究院 邮编:410083 电话:0731-88877163 邮箱:pmbjb@csu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn