首页   |   期刊介绍   |   编 委 会   |   投稿指南   |   出版法规   |   出版伦理   |   期刊订阅   |   联系我们   |   留言板   |   广告合作   |   ENGLISH
工艺技术

纤维质量比对纤维多孔陶瓷复合材料性能的影响

  • 莫琛 ,
  • 向阳 ,
  • 罗萌 ,
  • 彭志航 ,
  • 文瑾 ,
  • 刘平 ,
  • 李海龙
展开
  • 1.国防科技大学 空天科学学院, 长沙 410073;
    2.湖南人文科技学院 精细陶瓷与粉体材料湖南省重点实验室, 娄底 417000;
    3.湖南省新化县鑫星电子陶瓷有限责任公司, 娄底 417600;
    4.上海榕融新材料技术有限责任公司, 上海 201306

收稿日期: 2024-08-26

  修回日期: 2024-11-26

  网络出版日期: 2025-02-05

基金资助

湖南省自然基金资助项目(2023JJ50486);重点实验室基金项目(6142907230401);娄底市“材料谷”科技重大专项项目;精细陶瓷与粉体材料湖南省重点实验室开放基金项目

Effect of fiber quality ratio on the properties of fiber porous ceramic composites

  • MO Chen ,
  • XIANG Yang ,
  • LUO Meng ,
  • PENG Zhihang ,
  • WEN Jin ,
  • LIU Ping ,
  • LI Hailong
Expand
  • 1. College of Aerospace Science, National University of Defense Technology, Changsha 410073, China;
    2. Hunan Provincial Key Laboratory of Fine Ceramics and Powder Materials, Hunan University of Humanities, Science and Technology, Loudi 417000, China;
    3. Xinxing Electronic Ceramics Co.,Ltd., Loudi 417600, China;
    4. Rongrong New Materials Co.,Ltd., Shanghai 201306, China

Received date: 2024-08-26

  Revised date: 2024-11-26

  Online published: 2025-02-05

摘要

纤维多孔陶瓷复合材料因其低密度、低热导率及相对较高的抗压强度,被广泛应用于飞行器的热防护领域。本研究采用氧化物纤维制备高效隔热材料,在不同烧结温度下制备不同纤维质量比(铝硅酸盐与超细石英纤维)的纤维多孔陶瓷复合材料,研究纤维质量比对材料微观结构和宏观性能的影响。引入X射线计算机断层扫描(X-CT)技术,对复合材料微观结构进行非破坏性表征,利用三维重构软件对材料结构进行交互式阈值分析,对纤维分布进行重构,并使用纤维追踪分析对纤维取向进行模拟。结果表明:烧结温度较低时(900~1 000 ℃),随铝硅酸盐纤维含量增加,复合材料的密度增大,孔隙率受纤维质量比的影响较小,抗压强度逐渐降低。烧结温度为900 ℃,铝硅酸盐纤维质量分数为20%时,复合材料抗压强度为1.99 MPa;而铝硅酸盐纤维质量分数为45%时,抗压强度降至0.8 MPa。烧结温度为1 200 ℃时,两种纤维的强度均出现较大损伤,导致复合材料的抗压强度降低。纤维在微区内的分布并不均匀,部分区域存在较大孔隙,这些区域为复合材料强度薄弱区,容易失效。

本文引用格式

莫琛 , 向阳 , 罗萌 , 彭志航 , 文瑾 , 刘平 , 李海龙 . 纤维质量比对纤维多孔陶瓷复合材料性能的影响[J]. 粉末冶金材料科学与工程, 2024 , 29(6) : 477 -485 . DOI: 10.19976/j.cnki.43-1448/TF.2024072

Abstract

Fiber porous ceramic composites are widely used in the field of thermal protection for aircraft due to their low density, low thermal conductivity, and relatively high compressive strength. This study used oxide fibers to prepare efficient thermal insulation materials, and prepared fiber porous ceramic composites with different fiber mass ratios (aluminosilicate and ultrafine quartz fibers) at different sintering temperatures. The influences of fiber mass ratio on the microstructure and macroscopic properties of the composites were investigated. X-ray computed tomography (X-CT) technology was introduced to achieve non-destructive characterization of the microstructure of composites. The interactive threshold analysis of the structure and the reconstruction of the fiber distribution were carried out by 3D reconstruction software, and fiber orientations were simulated using fiber tracking analysis. The results show that when the sintering temperature is relatively low (900-1 000 ℃), as the content of aluminosilicate fibers increases, the density of the composites increases, and the porosity is less affected, the compressive strength of the composites gradually decreases. When the sintering temperature is 900 ℃ and the mass fraction of aluminosilicate fibers is 20%, the compressive strength of the composites is 1.99 MPa; when the mass fraction increases to 45%, the compressive strength decreases to 0.80 MPa. When the sintering temperature is 1 200 ℃, significant damage occurrs to the strength of both fibers, resulting in a decrease in the compressive strength of the composites. The fiber distribution is not uniform in the micro area, and there are large pores in some areas, which are weak areas of strength and prone to failure.

参考文献

[1] QIN Z, XU X J, XU T F, et al.High-strength thermal insulating porous mullite fiber-based ceramics[J]. Journal of the European Ceramic Society, 2022, 42(15): 7209-7218.
[2] WANG R Z, SUN J C, ZHANG R B.Super-flexible and low-shrinkage polyimide aerogel composites with excellent thermal insulation: boosted by SiO2 micron aerogel powder[J]. Materials Letters, 2024, 371: 136882.
[3] CAI H F, JIANG Y G, FENG J, et al.Preparation of silica aerogels with high temperature resistance and low thermal conductivity by monodispersed silica sol[J]. Materials & Design, 2020, 191: 108640.
[4] CAO C Y, WANG R X, XING X D, et al.Performance improvement of integrated thermal protection system using shaped-stabilized composite phase change material[J]. Applied Thermal Engineering, 2020, 164: 114529.
[5] KHAN T, ACAR V, AYDIN M R, et al.A review on recent advances in sandwich structures based on polyurethane foam cores[J]. Polymer Composites, 2020, 41(6): 2355-2400.
[6] SHAFI S, ZHAO Y.Superhydrophobic, enhanced strength and thermal insulation silica aerogel/glass fiber felt based on methyltrimethoxysilane precursor and silica gel impregnation[J]. Journal of Porous Materials, 2020, 27(2): 495-502.
[7] WANG X, HU Z, SUN C, et al.Fibrous porous ceramics with devisable phenolic resin reinforcing layer[J]. Ceramics International, 2019, 45(5): 5413-5417.
[8] CHEN Y F, HONG C Q, HU C L, et al.Thermal protective ceramic materials for aerospace vehicles[J]. Modern Technical Ceramics, 2017, 38(5): 311-390.
[9] ESZTER B, KOLOS M, JÁNOS M, et al. Preparation and characterization of fibrous alumina and zirconia toughened alumina ceramics with gradient porosity[J]. Nanomaterials, 2022, 12(23): 4165.
[10] WANG Z Y, XU X J, XU T F, et al.Porous mullite fiber-based ceramics inspired by biomimetic natural pine wood[J]. Ceramics International, 2024, 50(1): 584-592.
[11] LI X, LI S, WEN Q C, et al.Multilayered mullite ceramics with anisotropic properties[J]. Journal of the European Ceramic Society, 2023, 43(13): 5606-5615.
[12] CHEN M, SONG Z J, LEI H Y, et al.Reaction mechanisms and properties of in situ porous Al2O3-ZrO2-mullite composites[J]. Ceramics International, 2023, 49(18): 29829-29837.
[13] LIU J, REN B, ZHU T, et al.Enhanced mechanical properties and decreased thermal conductivity of porous alumina ceramics by optimizing pore structure[J]. Ceramics International, 2018, 44(11): 13240-13246.
[14] LIU D, HU P, ZHAO G, et al.Silica bonded mullite fiber composite with isotropic geometry and properties for thermal insulating[J]. Journal of Alloys and Compounds, 2017, 728: 1049-1057.
[15] BIGGEMANN J, STUMPF M, FEY T.Porous alumina ceramics with multimodal pore size distributions[J]. Materials, 2021, 14(12): 3294.
[16] DONG Y, WANG C A, ZHOU J, et al.A novel way to fabricate highly porous fibrous YSZ ceramics with improved thermal and mechanical properties[J]. Journal of the European Ceramic Society, 2012, 32(10): 2213-2218.
[17] YUAN L, MA B, ZHU Q, et al.Preparation and properties of mullite-bonded porous fibrous mullite ceramics by an epoxy resin gel-casting process[J]. Ceramics International, 2017, 43(7): 5478-5483.
[18] YANG M, LUO X, YI J, et al.A novel way to fabricate fibrous mullite ceramic using sol-gel vacuum impregnation[J]. Ceramics International, 2018, 44(11): 12664-12669.
[19] DONG X, SUI G, YUN Z, et al.Effect of temperature on the mechanical behavior of mullite fibrous ceramics with a 3D skeleton structure prepared by molding method[J]. Materials & Design, 2016, 90: 942-948.
[20] YUAN L, LIU Z L, TIAN C, et al.Structure and properties of Al2O3-bonded porous fibrous YSZ ceramics fabricated by aqueous gel-casting[J]. Ceramics International, 2021, 47(18): 25408-25415.
[21] ZHANG R, HOU X, YE C, et al.Enhanced mechanical and thermal properties of anisotropic fibrous porous mullite-zirconia composites produced using sol-gel impregnation[J]. Journal of Alloys and Compounds, 2017, 699: 511-516.
[22] WU L, LI C, CHEN Y, et al.Seed assisted in-situ synthesis of porous anorthite/mullite whisker ceramics by foam-freeze casting[J]. Ceramics International, 2021, 47(8): 11193-11201.
[23] ZHANG J, DONG X, HOU F, et al.Effects of fiber length and solid loading on the properties of lightweight elastic mullite fibrous ceramics[J]. Ceramics International, 2016, 42(4): 5018-5023.
[24] JIA T, CHEN H, DONG X, et al.Preparation of homogeneous mullite fibrous porous ceramics consolidated by propylene oxide[J]. Ceramics International, 2019, 45(2): 2474-2482.
[25] STANISHEVSKY A, SEVERINO C, ROSS S, et al.Nanofibrous glass/ceramic porous structures using high-temperature interface bonding[J]. Materials Today Communications, 2021, 27: 102218.
[26] 和祥, 黄千里, 陈煜辉, 等. 多孔氧化铝陶瓷材料的制备工艺研究进展[J]. 粉末冶金材料科学与工程, 2021, 26(6): 483-491.
HE Xiang, HUANG Qianli, CHEN Yuhui, et al.Research progress on the fabrication technology of porous alumina ceramics[J]. Materials Science and Engineering of Powder Metallurgy, 2021, 26(6): 483-491.
[27] 方豪杰, 贺亦文, 张晓云, 等. 烧结助剂对非等温烧结法制备氧化铝陶瓷微观结构和性能的影响[J]. 粉末冶金材料科学与工程, 2021, 26(6): 525-530.
FANG Haojie, HE Yiwen, ZHANG Xiaoyun, et al.Effects of sintering aids on microstructure and properties of non-isothermal sintering alumina ceramics[J]. Materials Science and Engineering of Powder Metallurgy, 2021, 26(6): 525-530.
[28] ZHANG W, XIANG Y, HUANG M, et al.Microstructural and mechanical characterization of a mullite fiber[J]. Ceramics International, 2021, 47(23): 33252-33258.
[29] BAN E, BAROCAS V H, SHEPHARD M S, et al.Softening in random networks of non-identical beams[J]. Journal of the Mechanics & Physics of Solids, 2016, 87: 38-50.
[30] 金杰. 基于细观力学理论的颗粒增强复合材料脱粘损伤研究[D]. 秦皇岛: 燕山大学, 2015.
JIN Jie.Constitutive theory and damage analysis of particulate-reinforced composites[D]. Qinhuangdao: Yanshan University, 2015.
文章导航

/

版权所有 © 《粉末冶金材料科学与工程》编辑部
地址:长沙市麓山南路中南大学粉末冶金研究院 邮编:410083 电话:0731-88877163 邮箱:pmbjb@csu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn