[1] 张王军, 李云, 吴玉娜, 等. 超高强7XXX系铝合金的研究现状及发展趋势[J]. 现代交通与冶金材料, 2023, 3(3): 52-60.
ZHANG Wangjun, LI Yun, WU Yuna, et al.Research status and development trends of ultra-high-strength 7XXX series aluminum alloys[J]. Modern Transportation and Metallurgical Materials, 2023, 3(3): 52-60.
[2] 任伟才, 王金花, 丛福官, 等. 7XXX系超高强铝合金板材各向异性的研究现状[J]. 轻合金加工技术, 2019, 47(6): 9-19.
REN Weicai, WANG Jinhua, CONG Fuguan, et al.Research status of anisotropy of 7XXX series ultra-high-strength aluminum alloy sheets[J]. Light Alloy Processing Technology, 2019, 47(6): 9-19.
[3] SIDOR J, MIROUX A, PETROV R, et al.Microstructural and crystallographic aspects of conventional and asymmetric rolling processes[J]. Acta Materialia, 2008, 56(11): 2495-2507.
[4] GUO M X, ZHU J, ZHANG Y, et al.The formation of bimodal grain size distribution in Al-Mg-Si-Cu alloy and its effect on the formability[J]. Materials Characterization, 2017, 132: 248-259.
[5] HU J G, IKEDA K, MURAKAMI T.Effect of texture components on plastic anisotropy and formability of aluminium alloy sheets[J]. Journal of Materials Processing Technology, 1998, 73(1/2/3): 49-56.
[6] 黄光杰, 汪凌云. 3104铝合金板材织构和制耳行为研究[J]. 重庆大学学报(自然科学版), 2000, 23(3): 20-22.
HUANG Guangjie, WANG Lingyun.Research on texture and ear forming behavior of 3104 aluminum alloy plate[J]. Journal of Chongqing University (Natural Science Edition), 2000, 23(3): 20-22.
[7] ENGLER O.Texture and anisotropy in the Al-Mg alloy AA 5005: part I: texture evolution during rolling and recrystallization[J]. Materials Science and Engineering A, 2014, 618: 654-662.
[8] ENGLER O, AEGERTER J.Texture and anisotropy in the Al-Mg alloy AA 5005: part II: correlation of texture and anisotropic properties[J]. Materials Science and Engineering A, 2014, 618: 663-671.
[9] ROTERS F, EISENLOHR P, HANTCHERLI L, et al.Overview of constitutive laws, kinematics, homogenization and multiscale methods in crystal plasticity finite-element modeling: theory, experiments, applications[J]. Acta Materialia, 2010, 58(4): 1152-1211.
[10] ZHANG H, DIEHL M, ROTERS F, et al.A virtual laboratory using high resolution crystal plasticity simulations to determine the initial yield surface for sheet metal forming operations[J]. International Journal of Plasticity, 2016, 80: 111-138.
[11] LIU W, PANG Y.A multi-scale modelling framework for anisotropy prediction in aluminium alloy sheet and its application in the optimisation of the deep-drawing process[J]. The International Journal of Advanced Manufacturing Technology, 2021, 114: 3401-3417.
[12] ZHANG Z C, LI Z S, TANG S, et al.Predicting the in-plane mechanical anisotropy of 7085 aluminum alloys through crystal plasticity simulations and machine learning[J]. Materials Today Communications, 2024, 38: 108381.
[13] HIELSCHER R, SCHAEBEN H.A novel pole figure inversion method: specification of the MTEX algorithm[J]. Journal of Applied Crystallography, 2008, 41(6): 1024-1037.
[14] 章乃俊, 何海铜, 薛菲. 冷轧压下率对3104铝合金织构演变的影响[J]. 宝钢技术, 2022(3): 22-28.
ZHANG Naijun, HE Haitong, XUE Fei. Effect of cold rolling reduction rate on the texture evolution of3104 aluminum alloy[J]. Baogang Technology, 2022(3): 22-28.
[15] ROTERS F, DIEHL M, SHANTHRAI P, et al.DAMASK: the Düsseldorf advanced material simulation kit for modeling multi-physics crystal plasticity, thermal, and damage phenomena from the single crystal up to the component scale[J]. Computational Materials Science, 2019, 158: 420-478.
[16] SHANTHRAJ P, EISENLOHR P, DIEHL M, et al.Numerically robust spectral methods for crystal plasticity simulations of heterogeneous materials[J]. International Journal of Plasticity, 2015, 66: 31-45.
[17] EISENLOHR P, DIEHL M, LEBENSOHN R A, et al.A spectral method solution to crystal elasto-viscoplasticity at finite strains[J]. International Journal of Plasticity, 2013, 46: 37-53.
[18] KRÖNER E. Zur plastischen verformung des vielkristalls[J]. Acta Metallurgica, 1961, 9(2): 155-161.
[19] HUTCHINSON J W.Bounds and self-consistent estimates for creep of polycrystalline materials[J]. Proceedings of the Royal Society A, 1976, 348(1652): 101-127.
[20] PEIRCE D, ASARO R J, NEEDLEMAN A.Material rate dependence and localized deformation in crystalline solids[J]. Acta Metallurgica, 1983, 31(12): 1951-1976.
[21] BROWN S B, KIM K H, ANAND L.An internal variable constitutive model for hot working of metals[J]. International Journal of Plasticity, 1989, 5(2): 95-130.
[22] 杨吉. 铝合金高速冷轧及变形过程中微结构与织构的研究[J]. 中国金属通报, 2023(3): 13-15.
YANG Ji.Research on microstructure and texture during high-speed cold rolling and deformation of aluminum alloy[J]. China Metal Bulletin, 2023(3): 13-15.
[23] 骆新根, 黄咸波, 郭小龙, 等. 冷轧压下率对薄规格取向硅钢冷轧和退火织构的影响[J]. 电工钢, 2019, 1(2): 21-28.
LUO Xingen, HUANG Xianbo, GUO Xiaolong, et al.Effect of cold rolling reduction rate on cold rolling and annealing texture of thin gauge oriented silicon steel[J]. Electrical Steel, 2019, 1(2): 21-28.
[24] 李万印, 陈亮维, 杨钢, 等. 1235铝合金铸轧坯料在加工过程中的织构演变[J]. 轻金属, 2016(9): 48-52.
LI Wanyin, CHEN Liangwei, YANG Gang, et al. Texture evolution of1235 aluminum alloy casting and rolling billets during processing[J]. Light Metals, 2016(9): 48-52.
[25] MACKENZIE J K.Second paper on statistics associated with the random disorientation of cubes[J]. Biometrika, 1958, 45(1/2): 229-240.
[26] ZHANG S, WANG Q, CHENG X, et al.Static recrystallization behavior and texture evolution during annealing in a cold rolling beta titanium alloy sheet[J]. Metals, 2022, 12(6): 899.
[27] 王泽鹏, 张红梅, 付魁军, 等. 压下率对热轧不锈钢复合板组织与性能的影响[J]. 金属热处理, 2016, 41(9): 103-106.
WANG Zepeng, ZHANG Hongmei, FU Kuijun, et al.Effect of reduction rate on the structure and properties of hot-rolled stainless steel composite plates[J]. Heat Treatment of Metals, 2016, 41(9): 103-106.
[28] 李海斌, 黄庆学, 周存龙, 等. 热轧碳钢/不锈钢复合板界面组织及性能分析[J]. 热加工工艺, 2014, 43(9): 36-39.
LI Haibin, HUANG Qingxue, ZHOU Cunlong, et al.Interface structure and performance analysis of hot-rolled carbon steel/stainless steel composite plate[J]. Hot Working Technology, 2014, 43(9): 36-39.
[29] 曾周燏, 江姗, 李东晖. TMCP工艺轧制桥梁用不锈钢复合板的组织与性能[J]. 中国冶金, 2017, 27(6): 19-23.
ZENG Zhouyu, JIANG Shan, LI Donghui.Microstructure and properties of stainless steel composite plates for bridges rolled by TMCP process[J]. China Metallurgy, 2017, 27(6): 19-23.
[30] 曾招芬, 齐文刚, 赵富有, 等. 冷变形对5052铝合金板材力学性能及制耳率的影响[J]. 金属热处理, 2022, 47(10): 208-210.
ZENG Zhaofen, QI Wengang, ZHAO Fuyou, et al.Effect of cold deformation on the mechanical properties and ear production rate of 5052 aluminum alloy plates[J]. Heat Treatment of Metals, 2022, 47(10): 208-210.
[31] KASEMER M, FALKINGER G, ROTERS F.A numerical study of the influence of crystal plasticity modeling parameters on the plastic anisotropy of rolled aluminum sheet[J]. Modelling and Simulation in Materials Science and Engineering, 2020, 28(8): 085005.
[32] WIDIANTARA I P, YANG H W, KIM M J, et al.Plastic anisotropy calculation of severely-deformed Al-Mg-Si alloy considering texture changes in electron backscatter diffraction[J]. Journal of Materials Science & Technology, 2019, 35(7): 1439-1443.
[33] LIU Y S, KANG S B, KO H S.Texture and plastic anisotropy of Al-Mg-0.3Cu-1.0Zn alloys[J]. Scripta Materialia, 1997, 37(4): 411-417.
[34] ZHAO Q, WAHAB M A, LING Y, et al.Grain-orientation induced stress formation in AA2024 monocrystal and bicrystal using crystal plasticity finite element method[J]. Materials & Design, 2021, 206: 109794.
[35] LI Y, XU G, LIU S, et al.Study on anisotropy of Al-Zn-Mg-Sc-Zr alloy sheet[J]. Materials Characterization, 2021, 172: 110904.
[36] CHEN P, MAO S C, LIU Y, et al.In-situ EBSD study of the active slip systems and lattice rotation behavior of surface grains in aluminum alloy during tensile deformation[J]. Materials Science and Engineering A, 2013, 580: 114-124.