首页   |   期刊介绍   |   编 委 会   |   投稿指南   |   出版法规   |   出版伦理   |   期刊订阅   |   联系我们   |   留言板   |   广告合作   |   ENGLISH
理论研究

晶体塑性模拟研究冷轧变形与热处理对7085铝合金织构及平面各向异性的影响

  • 谭鑫 ,
  • 张智晨 ,
  • 唐赛 ,
  • 肖代红 ,
  • 刘文胜
展开
  • 中南大学 粉末冶金研究院, 长沙 410083

收稿日期: 2024-09-09

  修回日期: 2024-11-19

  网络出版日期: 2025-02-05

基金资助

中南大学高强结构材料国家重点实验室基金资助项目(SYSJJ2022LWS01)

Crystal plasticity simulation studying the effects of cold rolling deformation and heat treatment on the texture and planar anisotropy of 7085 aluminum alloy

  • TAN Xin ,
  • ZHANG Zhichen ,
  • TANG Sai ,
  • XIAO Daihong ,
  • LIU Wensheng
Expand
  • Powder Metallurgy Research Institute, Central South University, Changsha 410083, China

Received date: 2024-09-09

  Revised date: 2024-11-19

  Online published: 2025-02-05

摘要

本文采用XRD、EBSD和拉伸实验,结合晶体塑性模拟,研究冷轧变形量和热处理对7085铝合金织构组分和塑性应变比r的影响,分析5种理想织构对平均塑性应变比和平面各向异性指数|Δr|的影响。结果表明:冷轧过程中变形量从50%增大至80%,S织构体积分数增幅最大(10.9%),Copper织构增幅最小(2.9%),再结晶织构变化不大。热处理后,合金的Brass、S和Copper织构均减弱,且变形量为80%时S织构减幅最大(15.9%),Copper织构减幅最小(2.4%);Cube织构有所增加,且变形量越大,增幅越显著;Goss织构变化不明显。冷轧态合金的|Δr|值大于时效态的;随冷轧变形量增大,冷轧态合金的值逐渐增大,而时效态的值则逐渐减小,同时|Δr|值均逐渐增大。轧制织构Δr<0,而再结晶织构Δr>0。Goss织构主要提供90°方向上的抗变形能力,Cube织构在3个方向上的r值差异较小。

本文引用格式

谭鑫 , 张智晨 , 唐赛 , 肖代红 , 刘文胜 . 晶体塑性模拟研究冷轧变形与热处理对7085铝合金织构及平面各向异性的影响[J]. 粉末冶金材料科学与工程, 2024 , 29(6) : 464 -476 . DOI: 10.19976/j.cnki.43-1448/TF.2024075

Abstract

The effects of cold rolling deformation and heat treatment on texture composition and plastic strain ratio r of 7085 aluminum alloy were investigated by XRD, EBSD, and tensile experiments combined with crystal plasticity simulation. The effects of five ideal textures on average plastic strain ratio and planar anisotropy index |Δr| were analyzed. The results show that when the deformation increases from 50% to 80% during cold rolling, the volume fraction of S texture increases the most (10.9%), the volume fraction of Copper texture increases the least (2.9%), and the recrystallization texture changes little. After heat treatment, the Brass, S, and Copper textures of the alloys are weakened, when the deformation amount is 80%, the S texture decreases the most (15.9%) and the Copper texture decreases the least (2.4%); the Cube texture increases, and the larger the deformation is, the more significant the increase is; the Goss texture change is not obvious. The |Δr| value of cold-rolled alloy is higher than that of aged alloy; with the increase of cold rolling deformation, the value of cold rolled alloy increases gradually, the value of aged alloy decreases gradually, and the |Δr| value increases gradually. Rolled texture Δr<0 while recrystallization texture Δr>0. The Goss texture mainly provides resistance to deformation in the 90° direction, while the Cube texture has little difference in r value in the three directions.

参考文献

[1] 张王军, 李云, 吴玉娜, 等. 超高强7XXX系铝合金的研究现状及发展趋势[J]. 现代交通与冶金材料, 2023, 3(3): 52-60.
ZHANG Wangjun, LI Yun, WU Yuna, et al.Research status and development trends of ultra-high-strength 7XXX series aluminum alloys[J]. Modern Transportation and Metallurgical Materials, 2023, 3(3): 52-60.
[2] 任伟才, 王金花, 丛福官, 等. 7XXX系超高强铝合金板材各向异性的研究现状[J]. 轻合金加工技术, 2019, 47(6): 9-19.
REN Weicai, WANG Jinhua, CONG Fuguan, et al.Research status of anisotropy of 7XXX series ultra-high-strength aluminum alloy sheets[J]. Light Alloy Processing Technology, 2019, 47(6): 9-19.
[3] SIDOR J, MIROUX A, PETROV R, et al.Microstructural and crystallographic aspects of conventional and asymmetric rolling processes[J]. Acta Materialia, 2008, 56(11): 2495-2507.
[4] GUO M X, ZHU J, ZHANG Y, et al.The formation of bimodal grain size distribution in Al-Mg-Si-Cu alloy and its effect on the formability[J]. Materials Characterization, 2017, 132: 248-259.
[5] HU J G, IKEDA K, MURAKAMI T.Effect of texture components on plastic anisotropy and formability of aluminium alloy sheets[J]. Journal of Materials Processing Technology, 1998, 73(1/2/3): 49-56.
[6] 黄光杰, 汪凌云. 3104铝合金板材织构和制耳行为研究[J]. 重庆大学学报(自然科学版), 2000, 23(3): 20-22.
HUANG Guangjie, WANG Lingyun.Research on texture and ear forming behavior of 3104 aluminum alloy plate[J]. Journal of Chongqing University (Natural Science Edition), 2000, 23(3): 20-22.
[7] ENGLER O.Texture and anisotropy in the Al-Mg alloy AA 5005: part I: texture evolution during rolling and recrystallization[J]. Materials Science and Engineering A, 2014, 618: 654-662.
[8] ENGLER O, AEGERTER J.Texture and anisotropy in the Al-Mg alloy AA 5005: part II: correlation of texture and anisotropic properties[J]. Materials Science and Engineering A, 2014, 618: 663-671.
[9] ROTERS F, EISENLOHR P, HANTCHERLI L, et al.Overview of constitutive laws, kinematics, homogenization and multiscale methods in crystal plasticity finite-element modeling: theory, experiments, applications[J]. Acta Materialia, 2010, 58(4): 1152-1211.
[10] ZHANG H, DIEHL M, ROTERS F, et al.A virtual laboratory using high resolution crystal plasticity simulations to determine the initial yield surface for sheet metal forming operations[J]. International Journal of Plasticity, 2016, 80: 111-138.
[11] LIU W, PANG Y.A multi-scale modelling framework for anisotropy prediction in aluminium alloy sheet and its application in the optimisation of the deep-drawing process[J]. The International Journal of Advanced Manufacturing Technology, 2021, 114: 3401-3417.
[12] ZHANG Z C, LI Z S, TANG S, et al.Predicting the in-plane mechanical anisotropy of 7085 aluminum alloys through crystal plasticity simulations and machine learning[J]. Materials Today Communications, 2024, 38: 108381.
[13] HIELSCHER R, SCHAEBEN H.A novel pole figure inversion method: specification of the MTEX algorithm[J]. Journal of Applied Crystallography, 2008, 41(6): 1024-1037.
[14] 章乃俊, 何海铜, 薛菲. 冷轧压下率对3104铝合金织构演变的影响[J]. 宝钢技术, 2022(3): 22-28.
ZHANG Naijun, HE Haitong, XUE Fei. Effect of cold rolling reduction rate on the texture evolution of3104 aluminum alloy[J]. Baogang Technology, 2022(3): 22-28.
[15] ROTERS F, DIEHL M, SHANTHRAI P, et al.DAMASK: the Düsseldorf advanced material simulation kit for modeling multi-physics crystal plasticity, thermal, and damage phenomena from the single crystal up to the component scale[J]. Computational Materials Science, 2019, 158: 420-478.
[16] SHANTHRAJ P, EISENLOHR P, DIEHL M, et al.Numerically robust spectral methods for crystal plasticity simulations of heterogeneous materials[J]. International Journal of Plasticity, 2015, 66: 31-45.
[17] EISENLOHR P, DIEHL M, LEBENSOHN R A, et al.A spectral method solution to crystal elasto-viscoplasticity at finite strains[J]. International Journal of Plasticity, 2013, 46: 37-53.
[18] KRÖNER E. Zur plastischen verformung des vielkristalls[J]. Acta Metallurgica, 1961, 9(2): 155-161.
[19] HUTCHINSON J W.Bounds and self-consistent estimates for creep of polycrystalline materials[J]. Proceedings of the Royal Society A, 1976, 348(1652): 101-127.
[20] PEIRCE D, ASARO R J, NEEDLEMAN A.Material rate dependence and localized deformation in crystalline solids[J]. Acta Metallurgica, 1983, 31(12): 1951-1976.
[21] BROWN S B, KIM K H, ANAND L.An internal variable constitutive model for hot working of metals[J]. International Journal of Plasticity, 1989, 5(2): 95-130.
[22] 杨吉. 铝合金高速冷轧及变形过程中微结构与织构的研究[J]. 中国金属通报, 2023(3): 13-15.
YANG Ji.Research on microstructure and texture during high-speed cold rolling and deformation of aluminum alloy[J]. China Metal Bulletin, 2023(3): 13-15.
[23] 骆新根, 黄咸波, 郭小龙, 等. 冷轧压下率对薄规格取向硅钢冷轧和退火织构的影响[J]. 电工钢, 2019, 1(2): 21-28.
LUO Xingen, HUANG Xianbo, GUO Xiaolong, et al.Effect of cold rolling reduction rate on cold rolling and annealing texture of thin gauge oriented silicon steel[J]. Electrical Steel, 2019, 1(2): 21-28.
[24] 李万印, 陈亮维, 杨钢, 等. 1235铝合金铸轧坯料在加工过程中的织构演变[J]. 轻金属, 2016(9): 48-52.
LI Wanyin, CHEN Liangwei, YANG Gang, et al. Texture evolution of1235 aluminum alloy casting and rolling billets during processing[J]. Light Metals, 2016(9): 48-52.
[25] MACKENZIE J K.Second paper on statistics associated with the random disorientation of cubes[J]. Biometrika, 1958, 45(1/2): 229-240.
[26] ZHANG S, WANG Q, CHENG X, et al.Static recrystallization behavior and texture evolution during annealing in a cold rolling beta titanium alloy sheet[J]. Metals, 2022, 12(6): 899.
[27] 王泽鹏, 张红梅, 付魁军, 等. 压下率对热轧不锈钢复合板组织与性能的影响[J]. 金属热处理, 2016, 41(9): 103-106.
WANG Zepeng, ZHANG Hongmei, FU Kuijun, et al.Effect of reduction rate on the structure and properties of hot-rolled stainless steel composite plates[J]. Heat Treatment of Metals, 2016, 41(9): 103-106.
[28] 李海斌, 黄庆学, 周存龙, 等. 热轧碳钢/不锈钢复合板界面组织及性能分析[J]. 热加工工艺, 2014, 43(9): 36-39.
LI Haibin, HUANG Qingxue, ZHOU Cunlong, et al.Interface structure and performance analysis of hot-rolled carbon steel/stainless steel composite plate[J]. Hot Working Technology, 2014, 43(9): 36-39.
[29] 曾周燏, 江姗, 李东晖. TMCP工艺轧制桥梁用不锈钢复合板的组织与性能[J]. 中国冶金, 2017, 27(6): 19-23.
ZENG Zhouyu, JIANG Shan, LI Donghui.Microstructure and properties of stainless steel composite plates for bridges rolled by TMCP process[J]. China Metallurgy, 2017, 27(6): 19-23.
[30] 曾招芬, 齐文刚, 赵富有, 等. 冷变形对5052铝合金板材力学性能及制耳率的影响[J]. 金属热处理, 2022, 47(10): 208-210.
ZENG Zhaofen, QI Wengang, ZHAO Fuyou, et al.Effect of cold deformation on the mechanical properties and ear production rate of 5052 aluminum alloy plates[J]. Heat Treatment of Metals, 2022, 47(10): 208-210.
[31] KASEMER M, FALKINGER G, ROTERS F.A numerical study of the influence of crystal plasticity modeling parameters on the plastic anisotropy of rolled aluminum sheet[J]. Modelling and Simulation in Materials Science and Engineering, 2020, 28(8): 085005.
[32] WIDIANTARA I P, YANG H W, KIM M J, et al.Plastic anisotropy calculation of severely-deformed Al-Mg-Si alloy considering texture changes in electron backscatter diffraction[J]. Journal of Materials Science & Technology, 2019, 35(7): 1439-1443.
[33] LIU Y S, KANG S B, KO H S.Texture and plastic anisotropy of Al-Mg-0.3Cu-1.0Zn alloys[J]. Scripta Materialia, 1997, 37(4): 411-417.
[34] ZHAO Q, WAHAB M A, LING Y, et al.Grain-orientation induced stress formation in AA2024 monocrystal and bicrystal using crystal plasticity finite element method[J]. Materials & Design, 2021, 206: 109794.
[35] LI Y, XU G, LIU S, et al.Study on anisotropy of Al-Zn-Mg-Sc-Zr alloy sheet[J]. Materials Characterization, 2021, 172: 110904.
[36] CHEN P, MAO S C, LIU Y, et al.In-situ EBSD study of the active slip systems and lattice rotation behavior of surface grains in aluminum alloy during tensile deformation[J]. Materials Science and Engineering A, 2013, 580: 114-124.
文章导航

/

版权所有 © 《粉末冶金材料科学与工程》编辑部
地址:长沙市麓山南路中南大学粉末冶金研究院 邮编:410083 电话:0731-88877163 邮箱:pmbjb@csu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn