首页   |   期刊介绍   |   编 委 会   |   投稿指南   |   出版法规   |   出版伦理   |   期刊订阅   |   联系我们   |   留言板   |   广告合作   |   ENGLISH
工艺技术

Ti-5Al-3Mo-3Cr-1Zr-0.1Si合金的形变再结晶行为及晶粒尺寸模型

  • 李超 ,
  • 樊凯 ,
  • 朱雪峰 ,
  • 詹孝冬 ,
  • 朱鸿昌
展开
  • 湖南湘投金天钛业科技股份有限公司,常德 415001

收稿日期: 2024-07-05

  修回日期: 2024-09-26

  网络出版日期: 2024-11-18

基金资助

国家重点研发计划资助项目(2023YFB3712400); 国家自然科学基金资助项目(52371040); 湖南省自然科学基金区域联合基金资助项目(2023JJ50333)

Deformation recrystallization behavior and grain size model of Ti-5Al-3Mo-3Cr-1Zr-0.1Si alloy

  • LI Chao ,
  • FAN Kai ,
  • ZHU Xuefeng ,
  • ZHAN Xiaodong ,
  • ZHU Hongchang
Expand
  • Hunan Xiangtou Gold Sky Titanium Industry Technology Co.,Ltd., Changde 415001, China

Received date: 2024-07-05

  Revised date: 2024-09-26

  Online published: 2024-11-18

摘要

本文对Ti-5Al-3Mo-3Cr-1Zr-0.1Si合金进行两相区变形和单相区退火,研究变形温度、变形程度以及变形-退火衔接方式对合金静态再结晶行为的影响,并建立变形温度和退火后β晶粒尺寸的相关性模型。结果表明:低变形温度有利于细化β再结晶晶粒。这归因于低变形温度下,α相含量增加,增大了β基体的变形储能,促进了β相的再结晶形核。退火后Ti-5Al-3Mo-3Cr-1Zr-0.1Si合金β相的平均晶粒尺寸随变形程度增大而减小,当变形程度超过40%后,β晶粒平均尺寸逐渐趋于稳定,约为136 μm。变形后的冷却速率也会影响合金退火后的晶粒尺寸,冷速越快,β晶粒尺寸越大。当合金在预变形后不经冷却直接升温至单相区进行退火时,β晶粒得到均匀细化。

本文引用格式

李超 , 樊凯 , 朱雪峰 , 詹孝冬 , 朱鸿昌 . Ti-5Al-3Mo-3Cr-1Zr-0.1Si合金的形变再结晶行为及晶粒尺寸模型[J]. 粉末冶金材料科学与工程, 2024 , 29(5) : 411 -422 . DOI: 10.19976/j.cnki.43-1448/TF.2024062

Abstract

In this paper, Ti-5Al-3Mo-3Cr-1Zr-0.1Si alloy was deformed in two-phase zone and annealed in single-phase zone to study the effects of deformation temperature, degree of deformation, and deformation-annealing articulation on the static recrystallisation behaviour of the alloy, and established a model for the correlation between the deformation temperature and the β grain size after annealing. The results show that the low deformation temperature is conducive to the β grain refinement. This is attributed to the increase of α phase content at low deformation temperature, which in turn increases the deformation distortion energy of β matrix and promotes the recrystallized nucleation of β phase. The average grain size of the alloy after annealing decreases with the increase of deformation degree. When the deformation degree exceeds 40%, the β grain average size gradually tends to stabilize, about 136 μm. The cooling rate after the deformation also affects the grain size after annealing, and the faster the cooling rate is, the larger the β grain size is. When the alloy is heated directly to the single-phase zone for annealing without cooling after pre-deformation, the β grains are uniformly refined.

参考文献

[1] FAN X G, YANG H, GAO P F, et al.The role of dynamic and post dynamic recrystallization on microstructure refinement in primary working of a coarse grained two-phase titanium alloy[J]. Journal of Materials Processing Technology, 2016, 234: 290-299.
[2] 杨明. AZ80镁合金动态再结晶行为与超塑性行为研究[D]. 洛阳: 河南科技大学, 2011.
YANG Ming.The study on the dynamic recrystallization behaviors and the superplastic behaviors for AZ80 magnesium alloy[D]. Luoyang: Henan University of Science and Technology, 2011.
[3] SAKAI T, BELYAKOV A, KAIBYSHEV R, et al.Dynamic and post-dynamic recrystallization under hot, cold and severe plastic deformation conditions[J]. Progress in Materials Science, 2014, 60: 130-207.
[4] DOHERTY R D, HUGHES D A, HUMPHREYS F J, et al.Current issues in recrystallization: a review[J]. Materials Today, 1997, 238(2): 219-274.
[5] HUANG K, LOGÉ R E.A review of dynamic recrystallization phenomena in metallic materials[J]. Materials & Design, 2016, 111: 548-574.
[6] DING S, TAYLOR T, KHAN S A, et al.Further understanding of metadynamic recrystallization through thermomechanical tests and EBSD characterization[J]. Journal of Materials Processing Technology, 2022, 299: 117359.
[7] DING S, ZHANG J, KHAN S A, et al.Metadynamic recrystallization in A5083 aluminum alloy with homogenized and as-extruded initial microstructures[J]. Materials Science and Engineering A, 2022, 838: 142789.
[8] 彭昱钦, 李应新, 梁霄鹏, 等. 热等静压成形Ti-45Al-7Nb-0.3W合金热轧板材的超塑性变形行为[J]. 粉末冶金材料科学与工程, 2022, 27(4): 419-425.
PENG Yuqin, LI Yingxin, LIANG Xiaopeng, et al.Superplastic deformation behavior of hot isostatic pressed Ti-45Al-7Nb-0.3W hot-rolled alloy sheet[J]. Materials Science and Engineering of Powder Metallurgy, 2022, 27(4): 419-425.
[9] LI Y, SHEN P, ZHANG H, et al.Deformation heterogeneity induced coarse grain refinement of the mixed-grain structure of 316LN steel through limited deformation condition[J]. Materials & Design, 2021, 210: 110057.
[10] 王冠强, 陈明松, 蔺永诚, 等. GH4169合金锻造混晶组织的均匀细化机制与工艺[J]. 精密成形工程, 2021, 13(1): 78-83.
WANG Guanqiang, CHEN Mingsong, LIN Yongcheng, et al.Uniformly refining mechanism and technology of mixed-grain for forged GH4169 superalloy[J]. Journal of Netshape Forming Engineering, 2021, 13(1): 78-83.
[11] GHADERI A, HODGSON P D, BARNETT M R.β-Ti grain refinement via α-precipitation[J]. Metallurgical and Materials Transactions A, 2015, 47(3): 1322-1330.
[12] 卢嘉欣, 陈查坤, 方铁辉. 再结晶分布对316L不锈钢力学性能的影响[J]. 粉末冶金材料科学与工程, 2018, 23(5): 475-481.
LU Jiaxin, CHEN Zhakun, FANG Tiehui.Effects of distribution of recrystalline grains on mechanical properties of 316L stainless steel[J]. Materials Science and Engineering of Powder Metallurgy, 2018, 23(5): 475-481.
[13] FAN J, LI J, KOU H, et al.Influence of solution treatment on microstructure and mechanical properties of a near β titanium alloy Ti-7333[J]. Materials & Design, 2015, 83: 499-507.
[14] JIA J B, LIU W C, XU Y, et al.Microstructure evolution, B2 grain growth kinetics and fracture behaviour of a powder metallurgy Ti-22Al-25Nb alloy fabricated by spark plasma sintering[J]. Materials Science and Engineering A, 2018, 730: 106-118.
[15] 刘继雄, 马宏刚, 李巍, 等. 两相区变形温度对TC18钛合金组织转变规律影响[J]. 热加工工艺, 2015, 44(9): 59-61.
LIU Jixiong, MA Honggang, LI Wei, et al.Effect of deformation temperature of two-phase region on changing law of microstructure of TC18 titanium alloy[J]. Hot Working Technology, 2015, 44(9): 59-61.
[16] 卢金文, 赵永庆, 葛鹏, 等. Ti-Mo 系钛合金 β 晶粒长大规律及晶粒尺寸对硬度的影响[J]. 稀有金属材料与工程, 2013, 42(11): 2269-2273.
LU Jinwen, ZHAO Yongqing, GE Peng, et al.Growth behavior of β-phase grain and influence of its grain size on hardness in Ti-Mo alloys[J]. Rare Metal Materials and Engineering, 2013, 42(11): 2269-2273.
[17] CUI Y M, ZHENG W W, LI C H, et al.Effectiveness of hot deformation and subsequent annealing for β grain refinement of Ti-5Al-5Mo-5V-1Cr-1Fe titanium alloy[J]. Rare Metals, 2021, 40(12): 3608-3615.
[18] LI Z S, GE J Y, KONG B, et al.Strain rate dependence and recrystallization modeling for TC18 alloy during post-deformation annealing[J]. Materials, 2023, 16(3): 1140.
[19] HE D G, LIN Y C, WANG L H.Microstructural variations and kinetic behaviors during metadynamic recrystallization in a nickel base superalloy with pre-precipitated δ phase[J]. Materials & Design, 2019, 165: 107584.
[20] 于永梅, 李文强, 李长生, 等. 粗晶硅钢热变形后静态再结晶及晶粒尺寸的演化模型研究[J]. 热加工工艺, 2019, 48(22): 42-47.
YU Yongmei, LI Wenqiang, LI Changsheng, et al.Study on evolution models of static recrystallization and grain size of coarse-grained silicon steel after hot deformation[J]. Hot Working Technology, 2019, 48(22): 42-47.
[21] 潘品李, 钟约先, 马庆贤, 等. 316LN钢多道次变形条件下的动态再结晶行为[J]. 塑性工程学报, 2011, 18(5): 13-18.
PAN Pinli, ZHONG Yuexian, MA Qingxian, et al.Research on the dynamic recrystallization behavior of 316LN steel under multi-pass deformation[J]. Journal of Plasticity Engineering, 2011, 18(5): 13-18.
[22] ZHANG F, LIU D, YANG Y, et al.Investigation on the meta-dynamic recrystallization behavior of Inconel 718 superalloy in the presence of δ phase through a modified cellular automaton model[J]. Journal of Alloys and Compounds, 2020, 817: 152773.
[23] 周强, 程军, 于振涛, 等. 一种新型近β型Ti-5.5Mo-6V-7Cr-4Al-2Sn-1Fe合金热变形行为研究[J]. 材料工程, 2019, 47(6): 121-128.
ZHOU Qiang, CHENG Jun, YU Zhentao, et al.Hot deformation behavior of new type of near β type Ti-5.5Mo-6V-7Cr-4Al-2Sn-1Fe alloy[J]. Journal of Materials Engineering, 2019, 47(6): 121-128.
[24] 庞铮, 赵春雷, 杜志伟, 等. LPSO相对Mg-7Gd-5Y-1Nd-xZn-0.5Zr (x=1, 1.5, 2)合金热压缩动态再结晶过程的影响[J]. 稀有金属, 2023, 47(8): 1059-1069.
PANG Zheng, ZHAO Chunlei, DU Zhiwei, et al.Dynamic recrystallization process of Mg-7Gd-5Y-1Nd-xZn-0.5Zr (x=1, 1.5, 2) alloy during hot compression with LPSO[J]. Chinese Journal of Rare Metals, 2023, 47(8): 1059-1069.
[25] 朱宁远, 赖文坤, 罗国虎, 等. Ti-6.5Al-3.5Mo-1.5Zr-0.3Si合金的高温塑性变形行为及热加工图[J]. 塑性工程学报, 2023, 30(5): 96-104.
ZHU Ningyuan, LAI Wenkun, LUO Guohu, et al.High temperature plastic deformation behavior and hot processing map of Ti-6.5Al3.5Mo-1.5Zr-0.3Si alloy[J]. Journal of Plasticity Engineering, 2023, 30(5): 96-104.
[26] 田宁, 宋晓云, 叶文君, 等. SP700钛合金热变形行为及组织演变[J]. 工程科学学报, 2024, 46(4): 676-683.
TIAN Ning, SONG Xiaoyun, YE Wenjun, et al.Hot deformation behavior and microstructure evolution of SP700 titanium alloy[J]. Chinese Journal of Engineering, 2024, 46(4): 676-683.
[27] LIN Y C, HUANG J, HE D G, et al.Phase transformation and dynamic recrystallization behaviors in a Ti55511 titanium alloy during hot compression[J]. Journal of Alloys and Compounds, 2019, 795: 471-482.
[28] ZHU S, YANG H, GUO L G, et al.Effect of cooling rate on microstructure evolution during α/β heat treatment of TA15 titanium alloy[J]. Materials Characterization, 2012, 70: 101-110.
[29] CHENG J, DU Z X, ZHANG X Y, et al.Characterization of Ti-25.5Al-13.5Nb-2.8Mo-1.8Fe alloy hot deformation behavior through processing map[J]. Frontiers in Materials, 2020, 7: 23.
[30] 段静利. 热处理工艺和热变形参数对Ti-20Zr-6.5Al-4V合金组织与性能的影响[D]. 秦皇岛: 燕山大学, 2015.
DUAN Jingli.Effect of heat treatment and hot deformation parameters on microstructure and mechanical property of Ti-20Zr-6.5Al-4V alloy[D]. Qinhuangdao: Yanshan University, 2015.
[31] AHMED M, SAVVAKIN D G, IVASISHIN O M, et al.The effect of cooling rates on the microstructure and mechanical properties of thermo-mechanically processed Ti-Al-Mo-V-Cr-Fe alloys[J]. Materials Science and Engineering A, 2013, 576: 167-177.
[32] 李瑞锋, 张智鑫, 唐斌, 等. TC18钛合金大规格棒材热变形行为研究进展[J]. 铸造技术, 2024, 45(4): 316-327.
LI Ruifeng, ZHANG Zhixin, TANG Bin, et al.Research progress on the thermal deformation behavior of TC18 titanium alloy large-size bars[J]. Foundry Technology, 2024, 45(4): 316-327.
[33] 方浩煜, 伍秋美, 袁铁锤. 退火温度对粉末冶金 Ti-2Mn-2Sn-0.1B合金组织和力学性能的影响[J]. 粉末冶金材料科学与工程, 2024, 29(3): 246-254.
FANG Haoyu, WU Qiumei, YUAN Tiechui.Effects of annealing temperature on microstructure and mechanical properties of Ti-2Mn-2Sn-0.1B alloy by powder metallurgy[J]. Materials Science and Engineering of Powder Metallurgy, 2024, 29(3): 246-254.
[34] 周晓光, 王铎, 马鑫, 等. ESP工艺条件下低碳钢奥氏体动态再结晶数学模型[J]. 钢铁研究学报, 2024, 36(1): 76-84.
ZHOU Xiaoguang, WANG Duo, MA Xin, et al.Mathematical model of dynamic recrystallization of austenite in low carbon steel under ESP process[J]. Journal of Iron and Steel Research, 2024, 36(1): 76-84.
文章导航

/

版权所有 © 《粉末冶金材料科学与工程》编辑部
地址:长沙市麓山南路中南大学粉末冶金研究院 邮编:410083 电话:0731-88877163 邮箱:pmbjb@csu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn