首页   |   期刊介绍   |   编 委 会   |   投稿指南   |   出版法规   |   出版伦理   |   期刊订阅   |   联系我们   |   留言板   |   广告合作   |   ENGLISH
工艺技术

对偶材料对铜-石墨复合材料载流摩擦磨损性能的影响

  • 吴海红 ,
  • 王能慧 ,
  • 张礼松 ,
  • 叶佳钰 ,
  • 王传锋 ,
  • 涂有旺 ,
  • 康潇
展开
  • 1.中南大学 材料科学与工程学院,长沙 410083;
    2.中船九江海洋装备(集团)有限公司,九江 332008;
    3.中南大学 粉末冶金国家重点实验室,长沙 410083

收稿日期: 2024-07-09

  修回日期: 2024-09-17

  网络出版日期: 2024-11-18

基金资助

江西省重大科技研发专项项目(20223AAE01002)

Effects of counterpart materials on the current-carrying friction and wear properties of copper-graphite composites

  • WU Haihong ,
  • WANG Nenghui ,
  • ZHANG Lisong ,
  • YE Jiayu ,
  • WANG Chuanfeng ,
  • TU Youwang ,
  • KANG Xiao
Expand
  • 1. School of Materials Science and Engineering, Central South University, Changsha 410083, China;
    2. CSSC Jiujiang Marine Equipment (Group) Co.,Ltd., Jiujiang 332008, China;
    3. State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China

Received date: 2024-07-09

  Revised date: 2024-09-17

  Online published: 2024-11-18

摘要

为探究铜-石墨复合材料在不同对偶材料下的载流摩擦磨损性能及相关机理,采用加压烧结法制备2种不同石墨含量的铜-石墨复合材料,并选用T2紫铜、QCr0.8铜锆合金和镀硬金的紫铜作为对偶材料进行载流摩擦磨损实验。通过扫描电镜、纳米压痕仪、表面轮廓仪和销盘摩擦磨损试验仪,对材料的微观结构、硬度和载流摩擦磨损性能进行研究。结果表明:与3种对偶材料对磨,铜-石墨材料的摩擦因数均在0.4~0.5之间,磨损率在10-13 m3/(N·m)数量级,平均电压降在0.7~1.4 V之间,平均电噪声在0.2~0.7 mV之间。其中,QCr0.8铜锆合金作为对偶材料时,铜-石墨复合材料的载流摩擦磨损性能最佳,表现出最低的磨损率、电压降和电噪声,此时材料的磨损机制主要为剥层磨损和少量磨粒磨损,表面形成了由Pb、石墨和少量氧化物组成的润滑膜。

本文引用格式

吴海红 , 王能慧 , 张礼松 , 叶佳钰 , 王传锋 , 涂有旺 , 康潇 . 对偶材料对铜-石墨复合材料载流摩擦磨损性能的影响[J]. 粉末冶金材料科学与工程, 2024 , 29(5) : 384 -395 . DOI: 10.19976/j.cnki.43-1448/TF.2024063

Abstract

To investigate the current-carrying friction and wear properties and underlying mechanisms of copper-graphite composites against different counterpart materials, two types of copper-graphite composites with varying graphite contents were prepared using the pressure sintering method. T2 copper, QCr0.8 copper-zirconium alloy, and hard gold-plated copper were selected as counterpart materials for current-carrying friction and wear tests. The microstructure, hardness, and friction and wear properties of the materials were examined using scanning electron microscopy, nanoindentation, surface profilometry, and pin-on-disk friction and wear test apparatus. The results show the average friction factors of the copper-graphite composites range between 0.4 and 0.5, the wear rates are on the order of 10-13 m3/(N·m), the average voltage drop ranges from 0.7 V to 1.4 V, and the average electrical noise ranges from 0.2 mV to 0.7 mV when grinding with the three counterpart materials. Among these, the copper-graphite composite exhibits the best current-carrying friction and wear properties when paired with QCr0.8

参考文献

[1] 杨健, 王屹, 王智勇, 等. 单点系泊系统用中压电滑环滑动电接触材料的研究进展[J]. 材料开发与应用, 2022, 37(1): 77-83.
YANG Jian, WANG Yi, WANG Zhiyong, et al.Research progress on sliding electrical contact materials for medium voltage slip rings in single point mooring system[J]. Development and Application of Materials, 2022, 37(1): 77-83.
[2] 熊雪, 董海防, 俞力峰, 等. 单点系泊系统高压电滑环电流传输单元方案研究[J]. 船电技术, 2022, 42(2): 35-39.
XIONG Xue, DONG Haifang, YU Lifeng, et al.Search on the scheme of high-voltage power slip ring current transmission unit in single-point mooring system[J]. Marine Electric & Electronic Engineering, 2022, 42(2): 35-39.
[3] WANG B, HONG K, FENG C, et al.The investigation of internal turret single point mooring slip ring structure design[J]. IOP Conference Series: Earth and Environmental Science, 2019, 252(2): 022060.
[4] GRANDIN M, WIKLUND U.Wear and electrical performance of a slip-ring system with silver-graphite in continuous sliding against PVD coated wires[J]. Wear, 2016, 348: 138-147.
[5] 李牧, 李鹏, 刘诗学, 等. FPSO单点滑环系统风险分析[J]. 船海工程, 2022, 51(2): 30-33.
LI Mu, LI Peng, LIU Shixue, et al.Risk assessment method of FPSO swivel equipment[J]. Ship & Ocean Engineering, 2022, 51(2): 30-33.
[6] 孙恪成, 李牧, 李鹏, 等. FPSO系泊系统失效原因探讨[J]. 天津科技, 2020, 47(1): 49-51.
SUN Kecheng, LI Mu, LI Peng, et al.Discussion on failure causes of FPSO moring system[J]. Tianjin Science & Technology, 2020, 47(1): 49-51.
[7] 孙振, 许永祥, 朱佳敏, 等. 树脂包覆石墨含量对铜基复合材料组织和性能的影响[J]. 粉末冶金材料科学与工程, 2023, 28(6): 534-544.
SUN Zhen, XU Yongxiang, ZHU Jiamin, et al.Tribological properties and wear mechanism of copper matrix composite[J]. Materials Science and Engineering of Powder Metallurgy, 2023, 28(6): 534-544.
[8] 刘滩, 肖鹏, 方华婵, 等. 石墨表面改性对铜基摩擦材料组织与性能的影响[J]. 粉末冶金材料科学与工程, 2019, 24(2): 195-204.
LIU Tan, XIAO Peng, FANG Huachan, et al.Effect of graphite surface modification on microstructure and properties of Cu-based friction materials[J]. Materials Science and Engineering of Powder Metallurgy, 2019, 24(2): 195-204.
[9] 冉旭, 黄显峰, 段利利, 等. 铜-石墨复合材料的摩擦学性能和磨损机理[J]. 材料导报, 2012, 26(8): 33-38.
RAN Xu, HUANG Xianfeng, DUAN Lili, et al.Tribological properties and wear mechanism of copper-graphite composite[J]. Materials Reports, 2012, 26(8): 33-38.
[10] CHO K H, HONG U S, LEE K S, et al.Tribological properties and electrical signal transmission of copper-graphite composites[J]. Tribology Letters, 2007, 27: 301-306.
[11] 李炎森, 张坤, 张国洪, 等. 不同石墨含量铜基摩擦材料耐热特性及摩擦性能研究[J]. 粉末冶金工业, 2023, 33(6): 68-73.
LI Yansen, ZHANG Kun, ZHANG Guohong, et al.Heat resistance and friction properties of copper-based friction materials with different graphite content[J]. Powder Metallurgy Industry, 2023, 33(6): 68-73.
[12] 刘犇, 张东卿, 李香粉, 等. 高石墨含量鳞片石墨/铜复合材料的微观结构和性能(英文)[J]. 新型炭材料, 2020, 35(1): 58-65.
LIU Ben, ZHANG Dongqing, LI Xiangfen, et al.The microstructures and properties of graphite flake/copper composites with high volume fractions of graphite flake[J]. New Carbon Materials, 2020, 35(1): 58-65.
[13] 徐晓峰, 杨晓倩, 杨正海. 石墨含量对铜/石墨材料高速载流摩擦性能的影响[J]. 河南科技大学学报(自然科学版), 2013, 34(5): 1-18.
XU Xiaofeng, YANG Xiaoqian, YANG Zhenghai.Influence of graphite contents on tribo-electric properties of Cu/graphite materials under high speed[J]. Journal of Henan University of Science and Technology (Natural Science), 2013, 34(5): 1-18.
[14] 张俊龙, 陈亚军, 李晨, 等. 石墨含量对铜基石墨自润滑复合材料摩擦过程中石墨润滑膜的影响[J]. 轴承, 2022(2): 31-34.
ZHANG Junlong, CHEN Yajun, LI Chen, et al.Effect of graphite contents on graphite lubricating film during friction of copper matrix graphite self-lubricating composites[J]. Bearing, 2022(2): 31-34.
[15] 胡铮, 张楠, 张万昊, 等. 石墨含量对铜基摩擦材料摩擦磨损性能的影响[J]. 粉末冶金技术, 2020, 38(6): 409-413.
HU Zheng, ZHANG Nan, ZHANG Wanhao, et al.Effect of graphite content on friction and wear properties of copper-based friction materials[J]. Powder Metallurgy Technology, 2020, 38(6): 409-413.
[16] KANG K J, YU B, DENG G Y, et al.Effect of counterpart materials on tribological behaviors of copper impregnated carbon/carbon composite under electric current condition[J]. Ceramics International, 2023, 49(18): 30008-30018.
[17] 邓陈虹, 陈广志, 葛启录. 配对材料对锡青铜基颗粒增强复合材料摩擦磨损性能的影响[J]. 材料工程, 2005(11): 28-31.
DENG Chenhong, CHEN Guangzhi, GE Qilu.Effect of different pairing materials on friction and wear properties of particles reinforced bronze-based composite[J]. Journal of Materials Engineering, 2005(11): 28-31.
[18] 袁国洲, 姚萍屏, 刘槟. 对偶材料对航空刹车副摩擦性能的影响[J]. 粉末冶金材料科学与工程, 2000(1): 64-68.
YUAN Guozhou, YAO Pingping, LIU Bin.Effects of couple materials on frictional behaviour of airplane brake pairs[J]. Materials Science and Engineering of Powder Metallurgy, 2000(1): 64-68.
[19] 甘子旸, 刘咏, 吕信群, 等. 铅对铜基固体自润滑材料的润滑机理[J]. 粉末冶金材料科学与工程, 2018, 23(4): 347-353.
GAN Ziyang, LIU Yong, LÜ Xinqun, et al.Lubrication mechanism of copper-based solid self-lubricating materials by lead[J]. Materials Science and Engineering of Powder Metallurgy, 2018, 23(4): 347-353.
[20] TU Y W, ZHANG L, ZHANG X, et al. Improving the mechanical and tribological behavior of Cu-WS2 self-lubricating composite with the addition of WS2 nanosheet[J]. Wear, 2023, 530/531: 205013.
[21] ZHOU Y K, ZHU R, ZUO X, et al.Tribo-electrical behaviors of CNTs-MoS2/Cu composites under sliding electrical contact with brass[J]. Tribology International, 2023, 180: 108207.
[22] 阮建明, 黄培云. 粉末冶金原理[M]. 北京: 机械工业出版社, 2012: 326-327.
RUAN Jianming, HUANG Peiyun.Powder Metallurgy Principle[M]. Beijing: China Machine Press, 2012: 326-327.
[23] 饶黄云, 吕波, 黄晓泽, 等. 电桥法测电阻实验的一些探讨[J]. 电子质量, 2022(10): 31-34.
RAO Huangyun, LÜ Bo, HUANG Xiaoze, et al.Some discussions on resistance measurement experiment by bridge method[J]. Electronics Quality, 2022(10): 31-34.
[24] 于潇, 郭志猛, 郝俊杰, 等. 风电用铜基粉末冶金制动闸片的制备与性能[J]. 粉末冶金材料科学与工程, 2014, 19(1): 66-70.
YU Xiao, GUO Zhimeng, HAO Junjie, et al.Preparation and properties of copper-based powder metallurgy brake pad for wind turbine[J]. Materials Science and Engineering of Powder Metallurgy, 2014, 19(1): 66-70.
[25] 郑锦, 何美凤, 刘平, 等. 石墨烯微片对放电等离子烧结制备铜基摩擦材料性能的影响[J]. 有色金属材料与工程, 2021, 42(3): 5-12.
ZHENG Jin, HE Meifeng, LIU Ping, et al.Effect of graphene nanoplatelets on the properties of copper-based friction materials prepared by spark plasma sintering[J]. Nonferrous Metal Materials and Engineering, 2021, 42(3): 5-12.
[26] 钱刚, 凤仪, 张学斌, 等. 铜基自润滑电接触复合材料研究综述[J]. 表面技术, 2016, 45(1): 7-12.
QIAN Gang, FENG Yi, ZHANG Xuebin, et al.Review on research of Cu-based self-lubricating electrical contact composites[J]. Surface technology, 2016, 45(1): 7-12.
[27] KESTURSATYA M, KIM J K, ROHATGI P K.Wear performance of copper-graphite composite and a leaded copper alloy[J]. Materials Science and Engineering A, 2003, 339(1/2): 150-158.
[28] SONG Y J, YANG Z H, JIAO J L, et al.Research on damage optimization of copper-carbon gradient composite materials for current-carrying friction[J]. Tribology International, 2024, 195: 109635.
文章导航

/

版权所有 © 《粉末冶金材料科学与工程》编辑部
地址:长沙市麓山南路中南大学粉末冶金研究院 邮编:410083 电话:0731-88877163 邮箱:pmbjb@csu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn