首页   |   期刊介绍   |   编 委 会   |   投稿指南   |   出版法规   |   出版伦理   |   期刊订阅   |   联系我们   |   留言板   |   广告合作   |   ENGLISH
工艺技术

电场辅助动态热锻制备超高韧3YSZ陶瓷

  • 张渤涛 ,
  • 姚曙 ,
  • 范建业 ,
  • 赵科 ,
  • 刘金铃 ,
  • 刘佃光
展开
  • 1.西南交通大学 材料科学与工程学院,成都 610031;
    2.西南交通大学 力学与航空航天学院,成都 611756

收稿日期: 2024-04-04

  修回日期: 2024-06-14

  网络出版日期: 2024-09-30

基金资助

国家自然科学基金面上项目(52272074,52072201,52072312); 四川省科技计划杰青培育项目(2021JDJQ0019); 中南大学粉末冶金国家重点实验室开放课题(SKLPM-KF-06); 中央高校基本科研业务费专项资金(2682024GF011,2682024GF016); 河南省航空材料与应用技术重点实验室开放基金(ZHKF-230102,ZHKF-230114)

Electric field assisted dynamic hot forging preparation of 3YSZ ceramic with ultrahigh toughness

  • ZHANG Botao ,
  • YAO Shu ,
  • FAN Jianye ,
  • ZHAO Ke ,
  • LIU Jinling ,
  • LIU Dianguang
Expand
  • 1. School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China;
    2. School of Mechanics and Aerospace Engineering, Southwest Jiaotong University, Chengdu 611756, China

Received date: 2024-04-04

  Revised date: 2024-06-14

  Online published: 2024-09-30

摘要

易脆这一固有特性极大限制了高性能陶瓷材料在工业领域的广泛应用。本文通过电场辅助动态热锻制备超高韧3YSZ陶瓷,研究在电场和动态力场耦合作用下3YSZ陶瓷的微结构演化和力学性能。结果表明:在1 000 ℃的恒定炉温、20 V/cm的电场强度、140 mA/mm2的电流密度和(50±10) MPa的动态压力下热锻10 min后,3YSZ陶瓷的维氏硬度和断裂韧性分别达到了(12.40±0.58) GPa和(10.69±0.33) MPa·m1/2,相较传统烧结陶瓷分别提高了11.5%和54.9%。韧性的显著提升主要是由于电场辅助动态热锻降低了3YSZ陶瓷中四方相的稳定性,使其在外力诱导时更易发生相变,从而有效抑制裂纹的扩展。电场辅助动态热锻技术具有无需添加增强相和增韧效果显著的优势,为高性能3YSZ陶瓷材料的增韧提供了新路径。

本文引用格式

张渤涛 , 姚曙 , 范建业 , 赵科 , 刘金铃 , 刘佃光 . 电场辅助动态热锻制备超高韧3YSZ陶瓷[J]. 粉末冶金材料科学与工程, 2024 , 29(4) : 290 -297 . DOI: 10.19976/j.cnki.43-1448/TF.2024032

Abstract

The inherent brittleness greatly limits the wide application of high performance ceramic materials in the industrial field. In this paper, ultrahigh toughness 3YSZ ceramics were prepared by electric field assisted dynamic hot forging. The microstructure evolution and mechanical properties of 3YSZ ceramics under the coupling of electric field and dynamic force field were studied. The results show that: under the conditions hot forging for 10 min at a constant furnace temperature of 1 000 ℃, electric field strength of 20 V/cm, current density of 140 mA/mm2, and dynamic pressure of (50±10) MPa, the Vickers hardness and fracture toughness of 3YSZ ceramic reache (12.40±0.58) GPa and (10.69±0.33) MPa·m1/2, respectively, which increase 11.5% and 54.9% compared with the conventional sintered ceramic. The remarkable improvement of toughness mainly due to the stability of the tetragonal phase in 3YSZ ceramics reduced by electric field assisted dynamic hot forging, which makes it easier to undergo phase transformation when induced by external force, so as to effectively inhibit crack propagation. Electric field assisted dynamic hot forging technology has the advantages of no need to add reinforcement phase and remarkable toughening effect, which provides a new path for toughening high performance 3YSZ ceramic materials.

参考文献

[1] BASU B.Toughening of yttria-stabilised tetragonal zirconia ceramics[J]. International Materials Reviews, 2005, 50(4): 239-256.
[2] LIU D G, GAO Y, LIU J L, et al.SiC whisker reinforced ZrO2 composites prepared by flash-sintering[J]. Journal of the European Ceramic Society, 2016, 36(8): 2051-2055.
[3] 蔡伟金, 李青, 刘耀, 等. 流延制备有序排列石墨烯增韧氧化锆陶瓷的结构与力学性能[J]. 粉末冶金材料科学与工程, 2020, 25(2): 104-111.
CAI Weijin, LI Qing, LIU Yao, et al.Structure and mechanical properties of ordered graphene toughened zirconia ceramics prepared by tape casting[J]. Materials Science and Engineering of Powder Metallurgy, 2020, 25(2): 104-111.
[4] ZHU T B, XIE Z P.Ultrastrong tough zirconia ceramics by defects-engineering[J]. Journal of the American Ceramic Society, 2022, 105(3): 1617-1621.
[5] LIU D G, FAN J Y, ZHAO K, et al.Preparation of super-strong ZrO2 ceramics using dynamic hot forging[J]. Journal of the European Ceramic Society, 2023, 43(2): 733-737.
[6] ZHAO K, FENG P Z, TAN J, et al.A new route to fabricate high-performance binderless tungsten carbide: dynamic sinter forging[J]. Journal of the American Ceramic Society, 2023, 106(6): 3343-3350.
[7] XU H Y, JI W, GUO W M, et al.Enhanced mechanical properties and oxidation resistance of zirconium diboride ceramics via grain-refining and dislocation regulation[J]. Advance Science, 2022, 9(6): 2104532.
[8] REN K, LIU J L, WANG Y G.Flash sintering of yttria-stabilized zirconia: fundamental understanding and applications[J]. Scripta Materialia, 2020, 187: 371-378.
[9] LIU D G, ZHANG X C, FAN J Y, et al.Sintering behavior and mechanical properties of alumina ceramics exposed to oscillatory pressure at different sintering stages[J]. Ceramics International, 2021, 47(16): 23682-23685.
[10] WANG C W, PING W W, BAI Q, et al.A general method to synthesize and sinter bulk ceramics in seconds[J]. Science, 2020, 368(6490): 521-526.
[11] 徐志伟, 彭可, 袁铁锤. 快速热压烧结制备高性能B4C-LaB6复合陶瓷[J]. 粉末冶金材料科学与工程, 2024, 29(1): 35-44.
XU Zhiwei, PENG Ke, YUAN Tiechui.High-performance B4C-LaB6 composite ceramics fabricated via rapid hot press sintering[J]. Materials Science and Engineering of Powder Metallurgy, 2024, 29(1): 35-44.
[12] 姚曙, 刘佃光, 赵科, 等. 闪烧致密Al2O3-ZrO2复相陶瓷的微观结构及力学性能[J]. 粉末冶金材料科学与工程, 2023, 28(5): 500-508.
YAO Shu, LIU Dianguang, ZHAO Ke, et al.Microstructure and mechanical properties of dense Al2O3-ZrO2 composite ceramic via flash sintering treatment[J]. Materials Science and Engineering of Powder Metallurgy, 2023, 28(5): 500-508.
[13] LIU J L, XU X, LIU D G, et al.Ultrafast formation of Al2O3‐Y3Al5O12 eutectic ceramic by flash sintering[J]. Journal of the American Ceramic Society, 2020, 103(8): 4051-4056.
[14] LI J, CHO J, DING J, et al. Nanoscale stacking fault-assisted room temperature plasticity in flash-sintered TiO2[J]. Science Advances, 2019, 5(9): eaaw5519.
[15] FAN L, SONG X W, ZHAO P F, et al.Super strong B4C ceramics prepared by dynamic sinter forging[J]. Journal of the European Ceramic Society, 2023, 43(9): 4209-4214.
[16] JI W, ZHANG J Y, WANG W M, et al.The microstructural origin of rapid densification in 3YSZ during ultra-fast firing with or without an electric field[J]. Journal of the European Ceramic Society, 2020, 40(15): 5829-5836.
[17] GUO R F, MAO H R, ZAHO Z T, et al.Ultrafast high-temperature sintering of bulk oxides[J]. Scripta Materialia, 2021, 193: 103-107.
[18] 刘金铃, 刘佃光, 任科, 等. 氧化物陶瓷闪烧机理及其应用研究进展[J]. 无机材料学报, 2022, 37(5): 473-480.
LIU Jinling, LIU Dianguang, REN Ke, et al.Research progress on the flash sintering mechanism of oxide ceramics and its application[J]. Journal of Inorganic Materials, 2022, 37(5): 473-480.
[19] YOON B, AVILA V, LAVAGNINI I R, et al.Reactive flash sintering of ceramics: a review[J]. Advanced Engineering Materials, 2022, 25(5): 2200731.
[20] YAO S, LIU Y S, LIU D G, et al.Effect of the Al2O3 content on the microstructure evolution of flash-sintered Al2O3-8YSZ ceramics[J]. Open Ceramics, 2023, 16: 100468.
[21] ZHAO R, HAN D Y, LU S C, et al.Position-sensitive electric property of flash-sintered 3Y-TZP ceramics based on DC bias assisted impedance analysis[J]. Ceramics International, 2022, 48(2): 2882-2885.
[22] REN K, XIA J B, WANG Y G.Grain growth kinetics of 3 mol.% yttria-stabilized zirconia during flash sintering[J]. Journal of the European Ceramic Society, 2019, 39(4): 1366-1373.
[23] FAN J Y, LIU D G, ZHAO K, et al.Densification kinetics and mechanism of zirconia ceramics via hot oscillating pressing[J]. Open Ceramics, 2023, 13: 100323.
[24] FAN J Y, YUAN Y, LI J S, et al.Densification and grain growth in oscillatory pressure sintering of alumina toughened zirconia ceramic composites[J]. Journal of Alloys and Compounds, 2020, 845: 155644.
[25] LIU D G, DU X H, ZHAO K, et al.Sintering behavior and mechanical properties of β-SiC ceramics under oscillatory pressure[J]. Ceramics International, 2024, 50(1): 1231-1238.
[26] HE H T, ZHAO R, TIAN H Y, et al.Sintering behavior of alumina whisker reinforced zirconia ceramics in hot oscillatory pressing[J]. Journal of Advanced Ceramics, 2022, 11(6): 893-900.
[27] 何宗倍, 陈放, 刘佃光, 等. 模拟核芯FCM燃料的振荡烧结行为研究[J]. 无机材料学报, 2024, 39(5): 501-508.
HE Zongbei, CHEN Fang, LIU Dianguang, et al.Sintering behavior of simulating core FCM fuel via hot oscillatory pressing[J]. Journal of Inorganic Materials, 2024, 39(5): 501-508.
[28] MA B S, ZHU Y, WANG K W, et al.Microstructure and dielectric property of flash sintered SiO2-coated BaTiO3 ceramics[J]. Scripta Materialia, 2019, 170: 1-5.
[29] RAJ R, KULKARNI A, LEBRUN J M, et al.Flash sintering: a new frontier in defect physics and materials science[J]. MRS Bulletin, 2021, 46(1): 36-43.
[30] MATSUI K, HOSOI K, FENG B, et al.Ultrahigh toughness zirconia ceramics[J]. Proceedings of the National Academy of Sciences of the United States of America, 2023, 120(27): e2304498120.
[31] XIE Z P, LI S, AN L N.A novel oscillatory pressure-assisted hot pressing for preparation of high performance ceramics[J]. Journal of the American Ceramic Society, 2014, 97(4): 1012-1015.
[32] LI S, XIE Z P, AN D, et al.Zirconia ceramics consolidated by oscillatory pressure sintering and subsequent carburization[J]. Ceramics International, 2019, 45(7): 9038-9042.
[33] LIU G X, LIU D G, LIU J L, et al.Asymmetric temperature distribution during steady stage of flash sintering dense zirconia[J]. Journal of the European Ceramic Society, 2018, 38(7): 2893-2896.
[34] ZHU F X, PENG X Y, LIU J L, et al.Surface temperature distribution on dense 8YSZ ceramics during the steady stage in AC flash sintering[J]. Ceramics International, 2021, 47(2): 2884-2887.
[35] RAJ R.Joule heating during flash-sintering[J]. Journal of the European Ceramic Society, 2012, 32(10): 2293-2301.
[36] DONG Y, CHEN I W.Electrical and hydrogen reduction enhances kinetics in doped zirconia and ceria: Ⅱ. mapping electrode polarization and vacancy condensation in YSZ[J]. Journal of the American Ceramic Society, 2018, 101(3): 1058-1073.
[37] LU S C, LIU J L, SHAO G, et al.On the electric conduction of ZrO2 in the steady stage of flash sintering[J]. Ceramics International, 2020, 46(5): 5715-5718.
[38] TRUNEC M, CHLUP Z.Higher fracture toughness of tetragonal zirconia ceramics through nanocrystalline structure[J]. Scripta Materialia, 2009, 61(1): 56-59.
文章导航

/

版权所有 © 《粉末冶金材料科学与工程》编辑部
地址:长沙市麓山南路中南大学粉末冶金研究院 邮编:410083 电话:0731-88877163 邮箱:pmbjb@csu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn