首页   |   期刊介绍   |   编 委 会   |   投稿指南   |   出版法规   |   出版伦理   |   期刊订阅   |   联系我们   |   留言板   |   广告合作   |   ENGLISH
工艺技术

等离子体渗硼对硬质合金表面金刚石涂层的影响

  • 丁晟 ,
  • 王海龙 ,
  • 马莉 ,
  • 魏秋平
展开
  • 1.中南大学 粉末冶金国家重点实验室,长沙 410083;
    2.中南大学 材料科学与工程学院,长沙 410083

收稿日期: 2024-04-01

  修回日期: 2024-05-23

  网络出版日期: 2024-08-12

基金资助

国家“十四五”重点研究发展计划(2021YFB3701800); 国家自然科学基金资助项目(52202056,52274370,52071345,51874370); 广东省“十三五”重点研究开发项目(2020B01085001); 湖南省高新技术产业科技创新引领计划(2022GK4037,2022GK4047); 湖南省自然科学基金资助项目(2023JJ40722); 粉末冶金国家重点实验室自主课题(621022230)

Effect of plasma boriding on diamond coating of cemented carbide surface

  • DING Sheng ,
  • WANG Hailong ,
  • MA Li ,
  • WEI Qiuping
Expand
  • 1. State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China;
    2. School of Materials Science and Engineering, Central South University, Changsha 410083, China

Received date: 2024-04-01

  Revised date: 2024-05-23

  Online published: 2024-08-12

摘要

采用热丝化学气相沉积法在等离子体渗硼预处理后的硬质合金表面沉积金刚石涂层,利用扫描电子显微镜、X射线衍射仪、拉曼光谱仪及洛氏硬度计探究预处理过程对金刚石涂层生长质量和结合性能的影响。结果表明:随等离子体渗硼温度升高,基体表面生成的CoWB含量增加,且WC脱碳还原为W。等离子体轰击使基体表面缺陷密度增大,能提高金刚石的形核速率,CoWB钝化层和W过渡层可抑制Co原子扩散,提高金刚石的生长质量。相较于酸碱两步法处理,经过等离子体渗硼处理的硬质合金表面金刚石涂层中石墨相含量明显减少,残余应力随等离子体渗硼温度升高而降低。石墨相含量的减少和残余应力的降低提高了金刚石涂层与硬质合金基体之间的结合性能,1 000 ℃预处理的硬质合金表面金刚石涂层的结合力等级可达HF1水平。

本文引用格式

丁晟 , 王海龙 , 马莉 , 魏秋平 . 等离子体渗硼对硬质合金表面金刚石涂层的影响[J]. 粉末冶金材料科学与工程, 2024 , 29(3) : 181 -190 . DOI: 10.19976/j.cnki.43-1448/TF.2024029

Abstract

After plasma boriding pretreatment, the diamond coating was deposited onto the surface of cemented carbide through hot filament chemical vapor deposition. The effects of pretreatmens on the growth quality and bonding properties of the diamond coating were investigated using scanning electron microscope, X-ray diffractometer, Raman spectrometer, and Rockwell hardness tester. The results indicate that as the plasma boriding temperature increases, CoWB content of the substrates surface increases while WC undergoes decarburization to form W. Plasma bombarding can increase the surface defect density of substrate and improve the nucleation rate of diamond. CoWB passivation layer and W transition layer can inhibit Co atom diffusion and improve the growth quality of diamond. Compared with an acid and alkali two-step method, the graphite phase content of diamond coating on cemented carbide surface after plasma boriding is significantly reduced, and the residual stress decreases with the increase of plasma boriding temperature. The reduction of graphite phase content and residual stress can improve the bonding properties between diamond coating and cemented carbide substrate, after pretreatment at 1 000 ℃, the bonding force of diamond coating on cemented carbide surface can reach the level of HF1.

参考文献

[1] LIU X W, ZHANG H, LIN G L, et al.Advances in deposition of diamond films on cemented carbide and progress of diamond coated cutting tools[J]. Vacuum, 2023, 217: 112562.
[2] QIAO Y, NIE S Y, LI W H, et al.Cobalt diffusion during the initial stage of CVD diamond growth on cemented carbide: a molecular dynamics and experimental study[J]. Applied Surface Science, 2023, 633: 157589.
[3] HE M L, ZHENG X Y, TIAN H X, et al.Residual thermal stress, fracture toughness, and hardness in WC-Co cemented carbide: finite element simulation and experimental verification[J]. Journal of Materials Research and Technology, 2022, 21: 2445-2454.
[4] WANG X C, WANG C C, HE W K, et al.Co evolutions for WC-Co with different Co contents during pretreatment and HFCVD diamond film growth processes[J]. Transactions of Nonferrous Metals Society of China, 2018, 28(3): 469-486.
[5] SUN F H, ZHANG Z M, CHEN M, et al.Improvement of adhesive strength and surface roughness of diamond films on Co-cemented tungsten carbide tools[J]. Diamond and Related Materials, 2003, 12(3): 711-718.
[6] TANG W, WANG S, LU F.Preparation and performance of diamond coatings on cemented carbide inserts with cobalt boride interlayers[J]. Diamond and Related Materials, 2000, 9(9): 1744-1748.
[7] TIAN Q Q, HUANG N, YANG B, et al.Diamond/β-SiC film as adhesion-enhanced interlayer for top diamond coatings on cemented tungsten carbide substrate[J]. Journal of Materials Science & Technology, 2017, 33(10): 1097-1106.
[8] ULLRAM S, HAUBNER R.Temperature pre-treatments of hardmetal substrates to reduce the cobalt content and improve diamond deposition[J]. Diamond and Related Materials, 2006, 15(4): 994-999.
[9] RAMASUBRAMANIAN K, ARUNACHALAM N, RAO M S R. Investigation on tribological behaviour of boron doped diamond coated cemented tungsten carbide for cutting tool applications[J]. Surface and Coatings Technology, 2017, 332: 332-340.
[10] YAN G Y, WU Y H, CRISTEA D, et al.Machining performance of hard-brittle materials by multi-layer micro-nano crystalline diamond coated tools[J]. Results in Physics, 2019, 13: 102303.
[11] CEN H, DU Q B, DENG F M, et al.Effects of hydrogen plasma etching on adhesive strength of diamond coating with cemented carbide substrate[J]. International Journal of Refractory Metals and Hard Materials, 2024, 120: 106612.
[12] YI M K, DENG B, XIAO H, et al.Gaseous boronizing pretreatment for the deposition of nanocrystalline diamond films on cemented carbide substrates[J]. Materials Research Express, 2019, 6(7): 076404.
[13] 余寒, 夏鑫, 朱俊奎, 等. 籽晶种植及掺硼形核对硬质合金表面金刚石涂层的影响[J]. 粉末冶金材料科学与工程, 2023, 28(4): 404-412.
YU Han, XIA Xin, ZHU Junkui, et al.Effect of seed crystal planting and boron-doped shape check on diamond coating on cemented carbide surface[J]. Materials Science and Engineering of Powder Metallurgy, 2023, 28(4): 404-412.
[14] VIDAKIS N, ANTONIADIS A, BILALIS N.The VDI 3198 indentation test evaluation of a reliable qualitative control for layered compounds[J]. Journal of Materials Processing Technology, 2003, 143: 481-485.
[15] SHEN X T, WANG X C, SUN F H, et al.Sandblasting pretreatment for deposition of diamond films on WC-Co hard metal substrates[J]. Diamond and Related Materials, 2017, 73: 7-14.
[16] WEI Q P, YU Z M, ASHFOLD M N R, et al. Synthesis of micro- or nano-crystalline diamond films on WC-Co substrates with various pretreatments by hot filament chemical vapor deposition[J]. Applied Surface Science, 2010, 256(13): 4357-4364.
[17] 吕反修. 金刚石膜制备与应用[M]. 北京: 科学出版社, 2014: 96-97.
LÜ Fanxiu.Preparation and Application of Diamond Film[M]. Beijing: Science Press, 2014: 96-97.
[18] JOHNSTON J M, BAKER P, CATLEDGE S A.Improved nanostructured diamond adhesion on cemented tungsten carbide with boride interlayers[J]. Diamond and Related Materials, 2016, 69: 114-120.
[19] JOHNSTON J M, CATLEDGE S A.Metal-boride phase formation on tungsten carbide (WC-Co) during microwave plasma chemical vapor deposition[J]. Applied Surface Science, 2016, 364: 315-321.
[20] SAIKI Y, BANDO T, HARIGAI T, et al.Sequential morphology of cobalt from cemented tungsten carbide in microcrystalline and nanocrystalline diamond films by HF-CVD[J]. Diamond and Related Materials, 2023, 132: 109643.
[21] 代明江, 王德政, 周克崧, 等. 等离子体刻蚀处理对金刚石膜结合性能影响的研究[J]. 广东有色金属学报, 1999, 9(1): 47-52.
DAI Mingjiang, WANG Dezheng, ZHOU Kesong, et al.Study on the effect of plasma etching treatment on the bonding properties of diamond films[J]. Journal of Guangdong Non-Ferrous Metals, 1999, 9(1): 47-52.
[22] 花腾宇, 夏鑫, 马莉, 等. 硬质合金晶粒度对其表面金刚石涂层的影响[J]. 粉末冶金材料科学与工程, 2023, 28(2): 180-191.
HUA Tengyu, XIA Xin, MA Li, et al.Effect of grain size on diamond coating of cemented carbide[J]. Materials Science and Engineering of Powder Metallurgy, 2023, 28(2): 180-191.
[23] TANG W, WANG Q, WANG S, et al.Adherent diamond coatings on cemented carbide substrates with different cobalt contents[J]. Diamond and Related Materials, 2001, 10(9): 1700-1704.
[24] RALCHENKO V G, SMOLIN A A, PEREVERZEV V G, et al.Diamond deposition on steel with CVD tungsten intermediate layer[J]. Diamond and Related Materials, 1995, 4(5): 754-758.
[25] LESPADE P, AL-JISHI R, DRESSELHAUS M S.Model for Raman scattering from incompletely graphitized carbons[J]. Carbon, 1982, 20(5): 427-431.
[26] ZHANG J B, WANG J P, ZHANG G Q, et al.A review of diamond synthesis, modification technology, and cutting tool application in ultra-precision machining[J]. Materials & Design, 2024, 237: 112577.
[27] ZHANG Y F, ZHANG F, GAO Q J, et al.The roles of argon addition in the hot filament chemical vapor deposition system[J]. Diamond and Related Materials, 2001, 10(8): 1523-1527.
[28] FERRARI A C, ROBERTSON J.Origin of the 1 150 cm-1 Raman mode in nanocrystalline diamond[J]. Physical Review B, 2001, 63(12): 121405.
[29] HADDAD M, KURTULUS O, MERTENS M, et al.Optimization of residual stresses inside diamond thin films grown by hot filament chemical vapor deposition (HFCVD)[J]. Diamond and Related Materials, 2023, 131: 109564.
[30] WINDISCHMANN H, EPPS G F, CONG Y, et al.Intrinsic stress in diamond films prepared by microwave plasma CVD[J]. Journal of Applied Physics, 1991, 69(4): 2231-2237.
[31] FERREIRA N G, ABRAMOF E, LEITE N F, et al.Analysis of residual stress in diamond films by X-ray diffraction and micro-Raman spectroscopy[J]. Journal of Applied Physics, 2002, 91(4): 2466-2472.
[32] LEI X L, SHEN B, CHEN S L, et al.Tribological behavior between micro- and nano-crystalline diamond films under dry sliding and water lubrication[J]. Tribology International, 2014, 69: 118-127.
文章导航

/

版权所有 © 《粉末冶金材料科学与工程》编辑部
地址:长沙市麓山南路中南大学粉末冶金研究院 邮编:410083 电话:0731-88877163 邮箱:pmbjb@csu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn