首页   |   期刊介绍   |   编 委 会   |   投稿指南   |   出版法规   |   出版伦理   |   期刊订阅   |   联系我们   |   留言板   |   广告合作   |   ENGLISH
理论研究

钛合金粉末叶轮盘热等静压成形性能

  • 何山 ,
  • 蔡高参 ,
  • 潘昱枫
展开
  • 浙江理工大学 机械工程学院,杭州 310018

收稿日期: 2024-03-26

  修回日期: 2024-06-05

  网络出版日期: 2024-08-12

基金资助

浙江理工大学青年创新专项项目(22242297-Y); 浙江省自然科学基金资助项目(LQ18E050010); 中国博士后基金资助项目(2018M642482)

Hot isostatic pressing forming performance of titanium alloy powder impeller disc

  • HE Shan ,
  • CAI Gaoshen ,
  • PAN Yufeng
Expand
  • School of Mechanical Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China

Received date: 2024-03-26

  Revised date: 2024-06-05

  Online published: 2024-08-12

摘要

对钛合金粉末热等静压成形叶轮盘进行数值模拟分析,研究其等效塑性应变分布和节点密度随时间的变化规律,以及压制件相对密度分布规律,并采用热等静压技术制备叶轮盘样件。结果表明:数值模拟结果与实验数据呈现较好的一致性。这一发现充分证明了数值模拟技术在叶轮盘热等静压工艺过程中的有效性,以及预测成形特性的准确性。这不仅为优化叶轮盘的生产工艺提供了有力的数据支持,也为后续复杂零件的成形预测奠定了坚实基础。

本文引用格式

何山 , 蔡高参 , 潘昱枫 . 钛合金粉末叶轮盘热等静压成形性能[J]. 粉末冶金材料科学与工程, 2024 , 29(3) : 172 -180 . DOI: 10.19976/j.cnki.43-1448/TF.2024028

Abstract

Numerical simulation analysis was conducted on the hot isostatic pressing of titanium alloy powder to form impeller discs. The distribution of equivalent plastic strain and the variation of node density over time, as well as the distribution of relative density of pressed parts were studied, and impeller disc samples were prepared using hot isostatic pressing technology. The results show that the numerical simulation results show good consistency with the experimental data. This discovery fully demonstrates the effectiveness of numerical simulation technology in the hot isostatic pressing process of impeller discs, and the accuracy of predicting the forming characteristics. This not only provides strong data support for optimizing the production process of impeller discs, but also lays a solid foundation for the subsequent prediction of complex parts.

参考文献

[1] 薛松海, 谢嘉琪, 刘时兵. 钛合金粉末冶金热等静压技术及发展现状[J]. 粉末冶金业, 2021, 31(5): 87-93.
XUE Songhai, XIE Jiaqi, LIU Shibing.Hot isostatic pressing technology and development status of titanium alloy powder metallurgy[J]. Powder Metallurgy Industry, 2021, 31(5): 87-93.
[2] 刘莹莹, 黄志涛. 固溶-时效对粉末成形TC4钛合金显微组织和力学性能的影响[J]. 钛工业进展, 2021, 38(6): 24-30.
LIU Yingying, HUANG Zhitao.Effect of solution-aging on microstructure and mechanical properties of powder-formed TC4 titanium alloy[J]. Titanium Industry Progress, 2021, 38(6): 24-30.
[3] 苑世剑. 复杂曲面薄壁构件流体压力成形理论与技术研究进展[J]. 工程科学, 2021, 7(3): 189-206.
YUAN Shijian.Research progress on fluid pressure forming theory and technology for complex curved thin-walled components[J]. Engineering, 2021, 7(3): 189-206.
[4] 雷煜东, 詹梅, 樊晓光, 等. 带筋薄壁构件成形制造技术的发展与展望[J]. 西北工业大学学报, 2022, 40(1): 1-17.
LEI Yudong, ZHAN Mei, FAN Xiaoguang, et al.A review on manufacturing technologies of thin-walled components with ribs[J]. Journal of Northwestern Polytechnical University, 2022, 40(1): 1-17.
[5] 王欣, 罗学昆, 宇波, 等. 航空航天用钛合金表面工程技术研究进展[J]. 航空制造技术, 2022, 65(4): 14-24.
WANG Xin, LUO Xuekun, YU Bo, et al.Research progress on surface engineering technology of titanium alloys for aerospace[J]. Aviation Manufacturing Technology, 2022, 65(4): 14-24.
[6] 车洪艳, 王铁军, 秦巍, 等. 热等静压技术在金属材料加工领域的应用及发展趋势[J]. 粉末冶金工业, 2022, 32(4): 1-7.
CHE Hongyan, WANG Tiejun, QIN Wei, et al.The application and development trend of hot isostatic pressing technology in the field of metal material processing[J]. Powder Metallurgy Industry, 2022, 32(4): 1-7.
[7] 彭景, 方毅, 徐勇, 等. 航空异形截面导管内高压整体成形工艺分析[J]. 兵器装备工程学报, 2023, 44(10): 106-111.
PENG Jing, FANG Yi, XU Yong, et al.Analysis of high pressure integrated forming process for aeronautical irregular section conduits[J]. Journal of Weapon Equipment Engineering, 2023, 44(10): 106-111.
[8] WANG X N, ZHU L P, YU W, et al.Research progress of powder hot isostatic pressing for intermetallic titanium aluminide[J]. Rare Metal Materials and Engineering, 2021, 50(10): 3797-3808.
[9] SONG F Y, ZHANG J G, GUO H M, et al.Research on application of hot isostatic pressing technology in the field of nickel-based cast superalloys[J]. Journal of Materials Engineering, 2021, 49(1): 65-74.
[10] 赵海生, 房立家, 刘欢, 等. 热等静压对激光选区熔化成形GH4169合金组织与高温性能的影响[J]. 航空材料学报, 2024, 44(1): 84-92.
ZHAO Haisheng, FANG Lijia, LIU Huan, et al.The effect of hot isostatic pressing on the microstructure and high-temperature properties of GH4169 alloy formed by laser selective melting[J]. Journal of Aerospace Materials, 2024, 44(1): 84-92.
[11] YOU D D, WANG Y H, YANG C, et al.Comparative analysis of the hot-isostatic-pressing densification behavior of atomized and milled Ti6Al4V powders[J]. Journal of Materials Reserash and Techology, 2020, 9(3): 3091-3108.
[12] GHOSH S.Predictive modeling of solidification during laser additive manufacturing of nickel superalloys: recent developments, future directions[J]. Materials Research Express, 2018: 5(1): 012001.
[13] DUNAEV A A, ERON'KO S B, IGNATENKOV B A, et al. Hot isostatic pressing-induced structural changes in MgAl2O4 ceramics[J]. Inorganic Materials, 2023, 59(5): 526-529.
[14] YANG X, ZHAO Z Y, BAI P K, et al.EBSD investigation on the microstructure of Ti48Al2Cr2Nb alloy hot isostatic pressing formed by selective laser melting (SLM)[J]. Materials Letters, 2021, 309: 131334.
[15] LIU T Y, SHI K, ZHAO J, et al.Effect of hot isostatic pressing processing parameters on microstructure and properties of Ti60 high temperature titanium alloy[J]. China Foundry, 2023, 20(1): 49-56.
[16] 赵嘉琪, 杨伟光, 南海, 等. 热等静压工艺参数对ZTC4钛合金力学性能的影响[J]. 材料工程, 2011(10): 42-46.
ZHAO Jiaqi, YANG Weiguang, NAN Hai, et al.The influence of hot isostatic pressing process parameters on the mechanical properties of ZTC4 titanium alloy[J]. Materials Engineering, 2011(10): 42-46.
[17] GIRELLI L, GIOVAGNOLI M, TOCCI M, et al.Impact behavior of gravity cast AlSi10Mg alloy: effect of hot isostatic pressing and innovative high pressure T6 heat treatment[J]. Frattura ED Integrita Strutturale-Fracture and Structural Integrity, 2023, 64: 204-217.
[18] WANG K M, LIU W, LI X N, et al.Effect of hot isostatic pressing on microstructure and properties of high chromium K648 superalloy manufacturing by extreme high-speed laser metal deposition[J]. Journal of Materials Research and Technology, 2024, 28: 3951-3959.
[19] LI J Z, SONG B, ZHANG L, et al.Effect of thermo-hydrogen-treatment on the surface oxide film and the compaction temperature of Ti-47Al-2Cr-2Nb pre-alloyed powders during hot-isostatic-pressing[J]. International Journal of Hydrogen Energy, 2019, 44(18): 9378-9385.
[20] LAN J, XUAN W D, HAN Y, et al.Enhanced high temperature elongation of nickel based single crystal superalloys by hot isostatic pressing[J]. Journal of Alloys and Compounds, 2020, 805: 78-83.
[21] ZHOU S, SONG B, XUE P J, et al.Numerical simulation and experimental investigation on densification, shape deformation, and stress distribution of Ti6Al4V compacts during hot isostatic pressing[J]. International Joural of Advanced Mancfacturing Technology, 2021, 88: 19-31.
[22] 马丁, 郎利辉, 肖毅, 等. 高温高压柔性介质成形GH4169异形超细曲面的致密化行为[J]. 粉末冶金材料科学与工程, 2020, 25(3): 185-190.
MA Ding, LANG Lihui, XIAO Yi, et al.Densification behavior of GH4169 ultra-fine curved surface irregular structures formed by high temperature and high pressure flexible media[J]. Materials Science and Engineering of Powder Metallurgy, 2020, 25(3): 185-190.
[23] XU Q, LI W, YIN Y J, et al.Finite element simulation of real cavity closure in cast Ti6Al4V alloy during hot isostatic pressing[J]. China foundry, 2022: 19(1): 55-62.
[24] WANG X, HUANG S, PENG Q, et al.Metal lon-doped hydroxyapatite-based materials for bone defect restoration[J]. Bioengineering-Basel, 2023, 10(12): 1367.
[25] MAKHINA D N, NIKULIN S A, SVIRIDENK M N, et al.Effect of technological parameters on the structure and properties of CuCrZr-316L bimetal pedestals[J]. Russian Metallurgy, 2021, 2021(10): 1255-1260.
[26] QU Z H, ZHANG P X, LIANG S J, et al.Deformation behavior of superalloy powder compact under hot isostatic pressing[J]. Advanced Engineering Materials, 2020, 22(11): 2000534.
[27] 张辉, 赵亚斌, 潘爱琼. 粉末冶金法制备细晶TC4钛合金的微观组织与力学性能[J]. 粉末冶金工业, 2021, 31(5): 66-70.
ZHANG Hui, ZHAO Yabin, PAN Aiqiong.Microstructure and mechanical properties of fine-grained TC4 titanium alloy prepared by powder metallurgy[J]. Powder Metallurgy Industry, 2021, 31(5): 66-70.
文章导航

/

版权所有 © 《粉末冶金材料科学与工程》编辑部
地址:长沙市麓山南路中南大学粉末冶金研究院 邮编:410083 电话:0731-88877163 邮箱:pmbjb@csu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn