首页   |   期刊介绍   |   编 委 会   |   投稿指南   |   出版法规   |   出版伦理   |   期刊订阅   |   联系我们   |   留言板   |   广告合作   |   ENGLISH
工艺技术

电共沉积法制备铜铁合金及其表征

  • 常帅卿 ,
  • 甘雪萍 ,
  • 刘超强
展开
  • 中南大学 粉末冶金国家重点实验室,长沙 410083

收稿日期: 2024-02-29

  修回日期: 2024-04-04

  网络出版日期: 2024-05-31

基金资助

国家自然科学基金资助项目(52071342)

Preparation and characterization of Cu-Fe alloy by electric co-deposition

  • CHANG Shuaiqing ,
  • GAN Xueping ,
  • LIU Chaoqiang
Expand
  • State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China

Received date: 2024-02-29

  Revised date: 2024-04-04

  Online published: 2024-05-31

摘要

铜铁合金具有优异的导电、导热性能以及独特的电磁屏蔽性能,且成本低廉,应用广泛,但易发生成分偏析。为解决这一问题,以五水合硫酸铜和七水合硫酸亚铁为原料,采用电共沉积法制备Cu-Fe合金镀层,通过扫描电子显微镜、能谱仪和透射电镜对镀层进行表征,研究电流密度、主盐离子浓度、络合剂浓度对镀层成分和显微组织的影响,探究镀层的生长过程。结果表明:Fe2+、Cu2+和柠檬酸(络合剂)浓度分别为0.016、0.04和0.2 mol/L,电流密度为2.0 A/dm2时,Cu-Fe合金镀层光亮平整无裂纹,具有较高的Fe含量(w(Fe)=14.87%)。镀层中Cu和Fe分布均匀,不存在单独的Fe相,证明电沉积过程中形成了亚稳合金。镀层中广泛分布着纳米晶,晶粒尺寸在20~100 nm之间。Cu-Fe镀层由细小枝晶密集生长,而后分化为小颗粒紧密生长,随时间延长颗粒逐渐长大,出现显著优先生长,颗粒之间可见明显间隙。不均匀的电场和成核位置分布是导致枝晶无序生长的主要原因。

本文引用格式

常帅卿 , 甘雪萍 , 刘超强 . 电共沉积法制备铜铁合金及其表征[J]. 粉末冶金材料科学与工程, 2024 , 29(2) : 139 -150 . DOI: 10.19976/j.cnki.43-1448/TF.2024014

Abstract

Cu-Fe alloys have excellent electrical and thermal conductivity and unique electromagnetic shielding property, low cost and wide application, but is prone to component segregation. In order to solve the problem, Cu-Fe alloy coatings were prepared by electric co-deposition with CuSO4∙5H2O and FeSO4∙7H2O as raw materials. The coatings were characterized by scanning electron microscopy, energy dispersive spectrometer, and transmission electron microscopy. The effects of current density, main salt ion concentration, and complexing agent concentration on the content and microstructure of the coatings were studied, and the growth process of the coating was explored. The results show that when the concentrations of Fe2+, Cu2+, and citric acid (complexing agent) are 0.016, 0.04, and 0.2 mol/L, respectively, current density is 2.0 A/dm2, the Cu-Fe alloy coating is bright and smooth without cracks, and has a high Fe content (w(Fe)=14.87%). The distribution of Cu and Fe in the coating is uniform, and there is no single Fe phase, which proves that metastable alloy is formed during electric co-deposition. Nanocrystals are widely distributed in the coating, with grain sizes ranging from 20 nm to 100 nm. Cu-Fe coating grows densely from small dendrites, and then differentiate into small particles. The particles grow gradually with the extension of time, and there is significant preferential growth and obvious gap between particles. The non-uniform electric field and nucleation position distribution are the main reasons leading to the disordered growth of dendrites.

参考文献

[1] 郭峰, 张波, 王彤彤. 高性能弥散强化铜合金生产工艺及应用[J]. 有色冶金设计与研究, 2022, 43(5): 18-20.
GUO Feng, ZHANG Bo, WANG Tongtong.Production process and application of high performance dispersion reinforced copper alloys[J]. Nonferrous Metals Engineering & Research, 2022, 43(5): 18-20.
[2] 姜业欣, 娄花芬, 解浩峰, 等. 先进铜合金材料发展现状与展望[J]. 中国工程科学, 2020, 22(5): 84-92.
JIANG Yexin, LOU Huafen, XIE Haofeng, et al.Development status and prospect of advanced copper alloy materials[J]. Chinese Engineering Science, 2020, 22(5): 84-92.
[3] LV X X, CAO N, HE L J, et al.Effects of Si addition on mechanical, electrical and magnetic property of Cu-10Fe alloy[J]. Materials Characterization, 2023, 196: 112612.
[4] ZUO H Z, WEI W F, LI X B, et al.Enhanced wetting and properties of carbon/copper composites by Cu-Fe alloying[J]. Composite Interfaces, 2022, 29(1): 111-120.
[5] KARWAN T, BOTOR J, CZERNECKI J, et al.Studies on removal of lead and iron from Cu-Fe-Pb alloys through gravitational segregation[J]. Archives of Metallurgy, 1999, 44(1): 65-82.
[6] 王檬, 王阳刚, 杨倩如, 等. 铜铁合金的制备与应用[J]. 中国有色金属学报, 2023, 33(8): 2521-2535.
WANG Meng, WANG Yanggang, YANG Qianru, et al.Preparation and application of Cu-Fe alloys[J]. The Chinese Journal of Nonferrous Metals, 2023, 33(8): 2521-2535.
[7] ZHANG C, CHEN C, LIU X, et al.High strength and high electrical conductivity in Cu-Fe alloys with nano and micro Fe particles[J]. Materials Science and Engineering A, 2022, 855: 143948.
[8] AKBARPOUR M R, MIRABAD H M, AZAR M K, et al.Synergistic role of carbon nanotube and SiCn reinforcements on mechanical properties and corrosion behavior of Cu-based nanocomposite developed by flake powder metallurgy and spark plasma sintering process[J]. Materials Science and Engineering A, 2020, 786: 139395.
[9] WANG P, SHUAI S, HUANG C, et al.Revealing the influence of high magnetic field on the solute distribution during directional solidification of Al-Cu alloy[J]. Journal of Materials Science & Technology, 2021, 88: 226-232.
[10] HE J, ZHAO J Z, RATKE L.Solidification microstructure and dynamics of metastable phase transformation in undercooled liquid Cu-Fe alloys[J]. Acta Materialia, 2006, 54(7): 1749-1757
[11] 马玉凤. 高强高导铜铁合金共还原工艺优化与组织性能研究[D]. 天津: 河北工业大学, 2019.
MA Yufeng.Study on co-reduction process optimization and microstructure properties of high strength and high conductivity copper-iron alloys[D]. Tianjin: Hebei University of Technology, 2019.
[12] MA E.Alloys created between immiscible elements[J]. Progress in Materials Science, 2005, 50(4): 413-509.
[13] WANG C P, LIU X J, TAKAKU Y, et al.Formation of core-type macroscopic morphologies in Cu-Fe base alloys with liquid miscibility gap[J]. Metallurgical and Materials Transactions A-Physical Metallurgy and Materials Science, 2004, 35A(4): 1243-1253.
[14] 高箐遥, 王守绪, 陈苑明, 等. 电流密度对硫酸盐光亮镀锡的影响[J].电镀与环保, 2019, 39(3): 7-10.
GAO Jingyao, WANG Shouxu, CHEN Yuanming, et al.Effect of current density on bright tin from sulfate bath[J]. Electroplating & Pollution Control, 2019, 39(3): 7-10.
[15] 宋静思, 谭永宁, 陈久强, 等. 液态金属冷却定向凝固/单晶炉的现状与展望[J]. 真空, 2023, 60(6): 61-65.
SONG Jingsi, TAN Yongning, TAN Jiuqiang, et al.Current situation and prospect of liquid metal cooling directional solidification/single crystal furnace[J]. Vacuum, 2023, 60(6): 61-65.
[16] HE J, XING C, ZHAO J, et al.Microstructure formation in Al-Bi-Co immiscible alloys directionally solidified with different melt superheat temperatures[J]. Journal of Materials Science & Technology, 2010, 26(2): 136-140.
[17] 许诠, 黄燕滨, 刘谦, 等. 激光熔覆法制备(CoCrFeNi)95Nb5 高熵合金涂层的表征与耐蚀性研究[J]. 电镀与涂饰, 2019, 38(11): 536-541.
XU Quan, HUANG Yanbin, LIU Qian, et al.Characterization and corrosion resistance study of laser-clad (CoCrFeNi)95Nb5 high-entropy alloy coating[J]. Electroplating and Finishing, 2019, 38(11): 536-541.
[18] HUANG Y.Characterization of dilution action in laser-induction hybrid cladding[J]. Optics and Laser Technology, 2011, 43(5): 965-973.
[19] ZHOU S F, WU C, ZHANG T Y, et al.Carbon nanotube- and Fep-reinforced copper-matrix composites by laser induction hybrid rapid cladding[J]. Scripta Materialia, 2014, 76: 25-28.
[20] DOESBURG J, IVEY D G.Co-deposition of gold-tin alloys from a non-cyanide solution[J]. Plating and Surface Finishing, 2001, 88(4): 78-83.
[21] SARAC U, BAYKUL M C.Effect of applied current density on morphological and structural properties of electrodeposited Fe-Cu films[J]. Journal of Materials Science & Technology, 2012, 28(11): 1004-1009.
[22] BRAN J, JEAN M, LARDE R, et al.Synthesis and magnetic characterization of a Cu80Co20 thin film obtained by electrodeposition technique[J]. Journal of Alloys and Compounds, 2014, 596: 118-124.
[23] COHEN-HYAMS T, PLITZKO J M, HETHERINGTON C J D, et al. Microstructural dependence of giant-magneto resistance in electrodeposited Cu-Co alloys[J]. Journal of Materials Science, 2004, 39(18): 5701-5709.
[24] LIANG D F, SHAO W B, ZANGARI G.Selection of phase formation in electroplated Ag-Cu alloys[J]. Journal of the Electrochemical Society, 2016, 163(2): D40-D48.
[25] DISLAKI E, SORT J, PELLICER E.Parametric aqueous electrodeposition study and characterization of Fe-Cu films[J]. Electrochimica Acta, 2017, 231: 739-748.
[26] 陈正奎. 铜电解沉积过程中阴极过电位影响因素研究进展[J]. 湖南有色金属, 2015, 31(5): 33-37.
CHEN Zhengkui.Research progress on influencing factors of cathode overpotential during electrodeposition of copper[J]. Hunan Nonferrous Metals, 2015, 31(5): 33-37.
[27] 黄斐斐. Au-Sn共晶合金无氰电镀共沉积机理与性能研究[D]. 大连: 大连理工大学, 2019.
HUANG Feifei.Study on non-cyanide co-electodepositing mechanism and properties of Au-Sn eutectic alloy[D]. Dalian: Dalian University of Technology, 2019.
[28] PASQUALE M A, GASSA L M, ARVIA A J.Copper electrodeposition from an acidic plating bath containing accelerating and inhibiting organic additives[J]. Electrochimica Acta, 2008, 53(20): 5891-5904.
[29] 王淼. 柠檬酸盐在电沉积铁基合金中的行为研究[D]. 长沙: 湖南大学, 2006.
WANG Miao.The behavior reaserch of citrate in electroplating ferrous alloys[D]. Changsha: Hunan University, 2006.
[30] 张鹏远, 师玉英, 胡楠, 等. 电镀过程中析氢反应的抑制与机理[J]. 电镀与精饰, 2024, 46(2): 71-78.
ZHANG Pengyuan, SHI Yuying, HU Nan, et al.Inhibition and mechanism of hydrogen evolution during electroplating[J]. Plating and Finishing, 2024, 46(2): 71-78.
[31] 孙旦, 柳欣遇, 陈娜, 等. 锌金属电镀过程中锌枝晶的生长行为及影响因素[J]. 大学化学, 2023, 38(4): 68-77.
SUN Dan, LIU Xinyu, CHEN Na, et al.The growth behavior and influencing factors of zinc dendrite in zinc electroplating process[J]. University Chemistry, 2023, 38(4): 68-77.
文章导航

/

版权所有 © 《粉末冶金材料科学与工程》编辑部
地址:长沙市麓山南路中南大学粉末冶金研究院 邮编:410083 电话:0731-88877163 邮箱:pmbjb@csu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn