首页   |   期刊介绍   |   编 委 会   |   投稿指南   |   出版法规   |   出版伦理   |   期刊订阅   |   联系我们   |   留言板   |   广告合作   |   ENGLISH
工艺技术

低损耗铌酸盐微波介质陶瓷的制备与性能

  • 郑浩然 ,
  • 邱蓉 ,
  • 杨盼 ,
  • 赵晓芳 ,
  • 于仕辉
展开
  • 1.广东交通职业技术学院 汽车与工程机械学院,广州 510000;
    2.东莞理工学院 国际微电子学院,东莞 523000;
    3.深圳大学 电子与信息工程学院,深圳 518000;
    4.洛阳理工学院 电气工程与自动化学院,洛阳 471000

收稿日期: 2024-02-02

  修回日期: 2024-04-09

  网络出版日期: 2024-05-31

基金资助

东莞市科技特派员项目(20231800500262); 广东省普通高校青年创新人才项目(2023KQNCX188); 国家自然科学基金面上项目(52175525)

Preparation and property of low loss niobate microwave dielectric ceramics

  • ZHENG Haoran ,
  • QIU Rong ,
  • YANG Pan ,
  • ZHAO Xiaofang ,
  • YU Shihui
Expand
  • 1. School of Automotive and Engineering Machinery, Guangdong Communication Polytechnic, Guangzhou 510000, China;
    2. International School of Microelectronics, Dongguan University of Technology, Dongguan 523000, China;
    3. College of Electronics and Information Engineering, Shenzhen University, Shenzhen 518000, China;
    4. School of Electrical Engineering and Automation, Luoyang Institute of Science and Technology, Luoyang 471000, China

Received date: 2024-02-02

  Revised date: 2024-04-09

  Online published: 2024-05-31

摘要

为了获得更低损耗的铌酸盐基微波介质陶瓷,本文以ZnO、GeO2、MoO3和Nb2O5为主要原料,采用固相反应合成法制备Zn[(Ge0.5Mo0.5)xNb1-x]2O6 (x=0.05、0.10、0.15、0.20)铌酸盐微波介质陶瓷。采用XRD、SEM以及矢量网络分析仪分别表征材料的物相组成、微观形貌及介电性能。结果表明:烧结温度为1 180 ℃时,x=0.05的微波介质陶瓷表面形貌最为致密,相对密度最大(94.58%),具有较好的微波介电性能,介电常数εr为21.7,品质因数Qf为64 610 GHz,谐振频率温度系数τf为-81.2×10-6/℃。

本文引用格式

郑浩然 , 邱蓉 , 杨盼 , 赵晓芳 , 于仕辉 . 低损耗铌酸盐微波介质陶瓷的制备与性能[J]. 粉末冶金材料科学与工程, 2024 , 29(2) : 133 -138 . DOI: 10.19976/j.cnki.43-1448/TF.2024011

Abstract

In order to obtain niobate-based microwave dielectric ceramics with lower loss, Zn[(Ge0.5Mo0.5)xNb1-x]2O6 (x=0.05, 0.10, 0.15, 0.20) niobate microwave dielectric ceramics were prepared by solid-state reaction method with ZnO, GeO2, MoO3, and Nb2O5 as main raw materials. XRD, SEM, and vector network analyzer were used to characterize the phase composition, microscopic morphologies, and dielectric properties of materials, respectively. The results show that when the sintering temperature is 1 180 ℃, the surface morphology of microwave dielectric ceramics with x=0.05 is the most compact, with the maximum relative density of 94.58%, and has good microwave dielectric properties, dielectric constant εr is 21.7, quality factor Qf is 64 610 GHz, and temperature coefficient of resonant frequency τf is -81.2×10-6/℃.

参考文献

[1] 黄玲, 王倩. 新型铌酸盐基介质材料的制备及性能评价[J]. 当代化工, 2022, 51(12): 2864-2868.
HUANG Ling, WANG Qian.Preparation and performance evaluation of new niobate-based dielectric materials[J]. Contemporary Chemical Industry, 2022, 51(12): 2864-2868.
[2] 周济, 李龙土, 熊小雨. 我国电子陶瓷技术发展的战略思考[J]. 中国工程科学, 2020, 22(5): 20-27.
ZHOU Ji, LI Longtu, XIONG Xiaoyu.Strategic thinking on the development of electronic ceramics technology in China[J]. Strategic Study of CAE, 2020, 22(5): 20-27.
[3] SEBASTIAN M T, UBIC R, JANTUNEN H.Low-loss dielectric ceramic materials and their properties[J]. International Materials Reviews, 2015, 60(7): 392-412.
[4] WANG D, LI L X, DU M K.Ultra-low dielectric loss lithium-based, temperature stable microwave dielectric ceramics[J]. Ceramics International, 2022, 48(1): 1394-1401.
[5] RICHTMYER R D.Dielectric resonators[J]. Journal of Applied Physics, 1939, 10(6): 391-398.
[6] XIONG Z H, ZHANG Y, NIYATO D, et al.Deep reinforcement learning for mobile 5G and beyond: fundamentals, applications, and challenges[J]. IEEE Vehicular Technology Magazine, 2019, 14(2): 44-52.
[7] LI J, ZHANG Z W, TIAN Y F, et al.Crystalstructure and microwave dielectric properties of a novel rock-salt type Li3MgNbO5 ceramic[J]. Journal of Materials Science, 2020, 55: 15643-15652.
[8] 谭可, 宋涛, 沈涛, 等. 低介电常数微波介质陶瓷的研究进展[J]. 现代技术陶瓷, 2022, 43(1): 11-29.
TAN Ke, SONG Tao, SHEN Tao, et al.Research progress of microwave dielectric ceramics with low dielectric constant[J]. Advanced Ceramics, 2022, 43(1): 11-29.
[9] BOULOGEORGOS A A A, ALEXIOUS A, MERKLE T, et al. Terahertz technologies to deliver optical network quality of experience in wireless systems beyond 5G[J]. IEEE Communications Magazine, 2018, 56(6): 144-151.
[10] 王刚. 低损耗铌酸盐系微波介质材料低温烧结与性能调控研究[D]. 成都: 电子科技大学, 2022.
WANG Gang.Study on low temperature sintering and performance control of low loss niobate microwave dielectric materials[D]. Chengdu: University of Electronic Science and Technology of China, 2022.
[11] 李柏辉, 罗可人, 张鹤瀛, 等. ANb2O6 (A=Ca, Mg, Co, Ni)型铌酸盐陶瓷的制备及其热/力学性质研究[J]. 航空制造技术, 2021, 64(16): 103-110.
LI Bohui, LUO Keren, ZHANG Heying, et al.Preparation and thermal/mechanical properties of ANb2O6 (A=Ca, Mg, Co, Ni) niobate ceramics[J]. Aeronautical Manufacturing Technology, 2021, 64(16): 103-110.
[12] 刘小雪, 蔡苇, 黄瑞, 等. ANbO3 (A=K, Na,Ag)材料光催化性能研究进展[J]. 中国陶瓷, 2022, 58(8): 1-6.
LIU Xiaoxue, CAI Wei, HUANG Rui, et al.Advances in photocatalytic properties of ANbO3 (A=K, Na, Ag) materials[J]. China Ceramics, 2022, 58(8): 1-6.
[13] 黄琦, 郑勇, 吕学鹏. 微波介质陶瓷介电机理研究进展[J]. 电子元件与材料, 2016(1): 1-6.
HUANG Qi, ZHENG Yong, LÜ Xuepeng.Research progress on dielectric mechanism of microwave dielectric ceramics[J]. Electronic Components and Materials, 2016(1): 1-6.
[14] MAEDA M, YAMAMURA T, IKEDA T.Dielectric characteristics of several complex oxide ceramics at microwave frequencies[J]. Japanese Journal of Applied Physics, 1987, 26(S2): 76.
[15] 杨浛. 新型铌酸盐微波介质陶瓷的制备与改性研究[D]. 成都: 电子科技大学, 2020.
YANG Han.Preparation and modification of new niobate microwave dielectric ceramics[D]. Chengdu: University of Electronic Science and Technology of China, 2020.
[16] 廖擎玮. 超低损耗AB(Nb,Ta)2O8型微波介质陶瓷结构与性能的研究[D]. 天津: 天津大学, 2012.
LIAO Qingwei.Study on structure and properties of ultra-low loss AB(Nb,Ta)2O8 microwave dielectric ceramics[D]. Tianjin: Tianjin University, 2012.
[17] 罗伟嘉. 类金红石介质陶瓷的性能调控与损耗机理研究[D]. 天津: 天津大学, 2020.
LUO Weijia.Study on performance regulation and loss mechanism of rutile-like dielectric ceramics[D]. Tianjin: Tianjin University, 2020.
[18] COURTNEY W E.Analysis and evaluation of a method of measuring the complex permittivity and permeability microwave insulators[J]. IEEE Transactions on Microwave Theory and Techniques, 1970, 18(8): 476-485.
[19] YAO G G, YAN J X, TAN J J, et al.Structure, chemical bond and microwave dielectric characteristics of novel Li3Mg4NbO8 ceramics[J]. Journal of the European Ceramic Society, 2021, 42: 6490-6494.
[20] XU S R, JIANG J, CHENG Z L, et al.Temperature stable, high-quality factor Li2TiO3Li4NbO4F microwave dielectric ceramics[J]. Crystals, 2021, 11(7): 741.
[21] WANG G, ZHANG D N, HUANG X, et al.Crystal structure and enhanced microwave dielectric properties of Ta5+ substituted Li3Mg2NbO6 ceramics[J]. Journal of the American Ceramic Society. 2020, 103(1): 214-223.
[22] HAN S, RYBIN M V, PITCHAPPA P, et al.Guide-mode resonances in all-dielectric terahertz metasurfaces[J]. Advanced Optical Materials, 2020, 8(3): 1900959.
[23] JANNOTTI P, SUBHASH G, ZHENG J, et al.Measurement of microscale residual stresses in multi-phase ceramic composites using Raman spectroscopy[J]. Acta Materialia, 2017, 129: 482-491.
[24] 赖元明. 低介低损耗LTCC微波介质材料及应用研究[D]. 成都: 电子科技大学, 2019.
LAI Yuanming.Low dielectric and low loss LTCC microwave dielectric materials and their applications[D]. Chengdu: University of Electronic Science and Technology of China, 2019.
[25] BI J X, YANG C H, WU H T.Correlation of crystal structure and microwave dielectric characteristics of temperature stable Zn1-xMnxZrNb2O8 (0.02≤x≤0.1) ceramics[J]. Ceramics International, 2017, 43(1): 92-98.
文章导航

/

版权所有 © 《粉末冶金材料科学与工程》编辑部
地址:长沙市麓山南路中南大学粉末冶金研究院 邮编:410083 电话:0731-88877163 邮箱:pmbjb@csu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn