[1] LANG E.The Role of Active Elements in the Oxidation Behaviour of High Temperature Metals and Alloys[M]. London: Elsevier Applied Science, 2012: 33-51.
[2] KOCH F, BOLT H.Self passivating W-based alloys as plasma facing material for nuclear fusion[J]. Physica Scripta, 2007, T128: 100-105.
[3] CALVO A, GARCÍA-ROSALES C, KOCH F, et al. Manufacturing and testing of self-passivating tungsten alloys of different composition[J]. Nuclear Materials and Energy, 2016, 9: 422-429.
[4] LITNOVSKY A, KLEIN F, TAN X, et al.Advanced self-passivating alloys for an application under extreme conditions[J]. Metals, 2021, 11(8): 1255.
[5] WANG W J, TAN X Y, YANG S P, et al.The influence of powder characteristics on densification behavior and microstructure evolution of W-Cr-Zr alloy consolidated by field-assisted sintering technology[J]. International Journal of Refractory Metals and Hard Materials, 2022, 108: 105939.
[6] GARAY J E.Current-activated, pressure-assisted densification of materials[J]. Annual Review of Materials Research, 2010, 40: 445-468.
[7] WANG W J, TAN X Y, LIU J Q, et al.The influence of heating rate on W-Cr-Zr alloy densification process and microstructure evolution during spark plasma sintering[J]. Powder Technology, 2020, 370: 9-18.
[8] HU Z Y, ZHANG Z H, CHENG X W, et al.A review of multi-physical fields induced phenomena and effects in spark plasma sintering: fundamentals and applications[J]. Materials & Design, 2020, 191: 108662.
[9] LITNOVSKY A, WEGENER T, KLEIN F, et al.New oxidation-resistant tungsten alloys for use in the nuclear fusion reactors[J]. Physica Scripta, 2017, T170: 014012.
[10] BACHURINA D, TAN X Y, KLEIN F, et al.Self-passivating smart tungsten alloys for DEMO: a progress in joining and upscale for a first wall mockup[J]. Tungsten, 2021, 3(1): 101-115.
[11] WANG W J, TAN X Y, YANG S P, et al.On grain growth and phase precipitation behaviors during W-Cr-Zr alloy densification using field-assisted sintering technology[J]. International Journal of Refractory Metals and Hard Mater, 2021, 98: 105552
[12] WEGENER T, KLEIN F, LITNOVSKY A, et al.Development of yttrium-containing self-passivating tungsten alloys for future fusion power plants[J]. Nuclear Materials and Energy, 2016, 9: 394-398.
[13] YANG S P, WANG W J, TAN X Y, et al.Influence of the applied pressure on the microstructure evolution of W-Cr-Y-Zr alloys during the FAST process[J]. Fusion Engineering and Design, 2021, 169: 112474.
[14] ZHU H, TAN X, TU Q, et al.Effect of pressure on densification and microstructure of W-Cr-Y-Zr alloy during SPS consolidated at 1 000 ℃[J]. Metals, 2022, 12(9): 1437.
[15] GORYNSKI C, ANSELMI-TAMBURINI U, WINTERER M.Controlling current flow in sintering: a facile method coupling flash with spark plasma sintering[J]. Review of Scientific Instruments, 2020, 91(1): 015112.
[16] OLEVSKY E A, FROYEN L.Impact of thermal diffusion on densification during SPS[J]. Journal of the American Ceramic Society, 2009, 92: S122-S132.
[17] DENG S, ZHAO H, LI R, et al.The influence of the local effect of electric current on densification of tungsten powder during spark plasma sintering[J]. Powder Technology, 2019, 356: 769-777.
[18] WU Y C, FU Z Y.Study of temperature field in spark plasma sintering[J]. Materials Science and Engineering B, 2002, 90(1/2): 34-37.
[19] MINIER L, LE GALLET S, GRIN Y, et al.A comparative study of nickel and alumina sintering using spark plasma sintering (SPS)[J]. Materials Chemistry and Physics, 2012, 134(1): 243-253.
[20] ANSELMI-TAMBURINI U, GENNARI S, GARAY J E, et al.Fundamental investigations on the spark plasma sintering/synthesis process[J]. Materials Science and Engineering A, 2005, 394(1/2): 139-148.
[21] ZAVALIANGOS A, ZHANG J, KRAMMER M, et al.Temperature evolution during field activated sintering[J]. Materials Science and Engineering A, 2004, 379(1/2): 218-228.
[22] OKE S R, IGE O O, FALODUN O E, et al.Powder metallurgy of stainless steels and composites: a review of mechanical alloying and spark plasma sintering[J]. The International Journal of Advanced Manufacturing Technology, 2019, 102: 3271-3290.
[23] LEE J H, KIM I Y, KANG M K, et al.Effects of SPS mold on the properties of sintered and simulated SiC-ZrB2 composites[J]. Journal of Electrical Engineering and Technology, 2013, 8(6): 1474-1480.
[24] MANIÈRE C, HARNOIS C, RIQUET G, et al. Flash spark plasma sintering of zirconia nanoparticles: electro-thermal- mechanical-microstructural simulation and scalability solutions[J]. Journal of the European Ceramic Society, 2022, 42(1): 216-226.
[25] OLEVSKY E A, GARCIA-CARDONA C, BRADBURY W L, et al.Fundamental aspects of spark plasma sintering: Ⅱ. finite element analysis of scalability[J]. Journal of the American Ceramic Society, 2012, 95(8): 2414-2422.
[26] LEE G, OLEVSKY E A, MANIÈRE C, et al. Effect of electric current on densification behavior of conductive ceramic powders consolidated by spark plasma sintering[J]. Acta Materialia, 2018, 144: 524-533.
[27] MANIÈRE C, DURAND L, BRISSON E, et al. Contact resistances in spark plasma sintering: from in-situ and ex-situ determinations to an extended model for the scale up of the process[J]. Journal of the European Ceramic Society, 2017, 37(4): 1593-1605.
[28] WEI X, GIUNTINI D, MAXIMENKO A L, et al.Experimental investigation of electric contact resistance in spark plasma sintering tooling setup[J]. Journal of the American Ceramic Society, 2015, 98(11): 3553-3560.
[29] ACHENANI Y, SAÂDAOUI M, CHEDDADI A, et al. Finite element modeling of spark plasma sintering: application to the reduction of temperature inhomogeneities, case of alumina[J]. Materials & Design, 2017, 116: 504-514.
[30] MANIÈRE C, PAVIA A, DURAND L, et al. Finite-element modeling of the electro-thermal contacts in the spark plasma sintering process[J]. Journal of the European Ceramic Society, 2016, 36(3): 741-748.
[31] TIWARI D, BASU B, BISWAS K.Simulation of thermal and electric field evolution during spark plasma sintering[J]. Ceramics International, 2009, 35(2): 699-708.
[32] VAN DER LAAN A, BOYER V, EPHERRE R, et al. Simple method for the identification of electrical and thermal contact resistances in spark plasma sintering[J]. Journal of the European Ceramic Society, 2021, 41(1): 599-610.
[33] VANMEENSEL K, LAPTEV A, HENNICKE J, et al.Modelling of the temperature distribution during field assisted sintering[J]. Acta Materialia, 2005, 53(16): 4379-4388.
[34] BAGHERI S M, VAJDI M, MOGHANLOU F S, et al.Numerical modeling of heat transfer during spark plasma sintering of titanium carbide[J]. Ceramics International, 2020, 46(6): 7615-7624.
[35] MAIZZA G, GRASSO S, SAKKA Y, et al.Relation between microstructure, properties and spark plasma sintering (SPS) parameters of pure ultrafine WC powder[J]. Science and Technology of Advanced Materials, 2007, 8(7/8): 644-654.
[36] CALVO A, ORDÁS N, ITURRIZA I, et al. Manufacturing of self-passivating tungsten based alloys by different powder metallurgical routes[J]. Physica Scripta, 2016, T167: 014041.
[37] FRISK K, GUSTAFSON P.An assessment of the Cr-Mo-W system[J]. Calphad, 1988, 12(3): 247-254.
[38] MANIÈRE C, DURAND L, CHEVALLIER G, et al. A spark plasma sintering densification modeling approach: from polymer, metals to ceramics[J]. Journal of Materials Science, 2018, 53: 7869-7876.
[39] DENG S, LI R, YUAN T, et al.Electromigration-enhanced densification kinetics during spark plasma sintering of tungsten powder[J]. Metallurgical and Materials Transactions A, 2019, 50: 2886-2897.
[40] VANHERCK T, JEAN G, GONON M, et al.Spark plasma sintering: homogenization of the compact temperature field for non conductive materials[J]. International Journal of Applied Ceramic Technology, 2015, 12: E1-E12.
[41] MANIÈRE C, LEE G, MCKITTRICK J, et al. Energy efficient spark plasma sintering: breaking the threshold of large dimension tooling energy consumption[J]. Journal of the American Ceramic Society, 2019, 102(2): 706-716.