[1] PARVIZI S, HASHEMI S M, ASGARINIA F, et al.Effective parameters on the final properties of NiTi-based alloys manufactured by powder metallurgy methods: a review[J]. Progress in Materials Science, 2021, 117(7): 100739.
[2] ELAHINIA M H, HASHEMI M, TABESH M, et al.Manufacturing and processing of NiTi implants: a review[J]. Progress in Materials Science, 2012, 57(5): 911-946.
[3] 杜昌海, 李东阳, 朱本银, 等. 高强度高应力循环稳定的HDH多孔NiTi形状记忆合金[J]. 工程科学学报, 2023, 45(12): 2059-2069.
DU Changhai, LI Dongyang, ZHU Benyin, et al.HDH porous NiTi shape memory alloy with high strength and high stress cycle stability[J]. Journal of Engineering Sciences, 2023, 45(12): 2059-2069.
[4] 康景涛, 刘子豪, 郑聃, 等. Ni含量对激光粉末床熔融成形NiTi形状记忆合金显微组织和力学性能的影响[J]. 铸造技术, 2023, 44(7): 649-656.
KANG Jingtao, LIU Zihao, ZHENG Dan, et al.Effect of Ni content on microstructure and mechanical properties of NiTi shape memory alloy formed by laser powder bed melting[J]. Foundry Technology, 2023, 44(7): 649-656.
[5] 王盖世, 左舜贵, 曹军, 等. Ti-Ni超弹合金B2相与R相的氢脆敏感性比较研究[J]. 金属功能材料, 2022, 29(5): 10-17.
WANG Gaishi, ZUO Shungui, CAO Jun, et al.Comparative study on hydrogen embrittlement sensitivity between B2 phase and R phase of Ti-Ni superelastic alloys[J]. Metal Functional Materials, 2022, 29(5): 10-17.
[6] 倪江涛, 周庆军, 衣凤, 等. 激光增材制造技术发展及在航天领域的应用进展[J]. 稀有金属, 2022, 46(10): 1365-1382.
NI Jiangtao, ZHOU Qingjun, YI Feng, et al.Development of laser additive manufacturing technology and its application in aerospace field[J]. Rare Metals, 2022, 46(10): 1365-1382.
[7] 熊强, 连利仙, 胡旺, 等. 增材制造用新型镍基高温合金的设计与开发[J]. 铸造技术, 2023, 44(8): 748-755.
XIONG Qiang, LIAN Lixian, HU Wang, et al.Design and development of new nickel-based superalloys for additive manufacturing[J]. Foundry Technology, 2023, 44(8): 748-755.
[8] 刘旭明, 张大越, 张建, 等. 激光熔丝增材制造低合金钢的微观组织及性能研究[J]. 钢铁钒钛, 2022, 43(1): 119-124.
LIU Xuming, ZHANG Dayue, ZHANG Jian, et al.Study on microstructure and properties of low alloy steel manufactured by laser fuse additive[J]. Iron Steel Vanadium Titanium, 2022, 43(1): 119-124.
[9] 丁红瑜, 武姝婷, 袁康, 等. 增材制造国内外标准研究进展[J]. 中国材料进展, 2020, 39(12): 955-961.
DING Hongyu, WU Shuting, YUAN Kang, et al.Research progress of additive manufacturing standards at home and abroad[J]. Materials Progress in China, 2020, 39(12): 955-961.
[10] SVETLIZKY D, DAS M, ZHENG B, et al.Directed energy deposition (DED) additive manufacturing: physical characteristics, defects, challenges and applications[J]. Materials Today, 2021, 49(5): 271-295.
[11] ROMANENKO D, PRAKASH V J, KUHN T, et al.Effect of DED process parameters on distortion and residual stress state of additively manufactured Ti-6Al-4V components during machining[J]. Procedia CIRP, 2022, 111(3): 271-276.
[12] ANDRADE M F, PEREIRA M V, TEIXEIRA M C, et al.Fatigue life assessment in the very high cycle regime of AISI 316L stainless steel processed by L-DED additive manufacturing[J]. Procedia Structural Integrity, 2022, 42(4): 1008-1016.
[13] NIU P, LI R, FAN Z, et al.Additive manufacturing of TRIP-assisted dual-phases Fe50Mn30Co10Cr10 high-entropy alloy: microstructure evolution, mechanical properties and deformation mechanisms[J]. Materials Science and Engineering A, 2021, 814(2): 141264.
[14] ZHENG D, LI R D, YUAN T C, et al.Comparative study on microstructure and properties of NiTi shape memory alloy by selective laser melting and directed energy deposition[J]. Journal of Central South University, 2021, 28(4): 1028-1042.
[15] WANG Y F, YUE Z F, WANG J.The effect of grain orientation on the tensilecompressive asymmetry of polycrystalline NiTi shape memory alloy[J]. Materialwissenschaft und Werkstofftechnik, 2007, 38(4): 294-298.
[16] LUO J, XU K, LI C, et al.The evolution of dynamic recrystallization and recrystallization texture during isothermal compression of NiTi shape memory alloy[J]. Materials Science and Engineering A, 2021, 820(5): 11873-11875.
[17] TANG W, SHEN Q, YAO X, et al.Effect of grain size on the microstructure and mechanical anisotropy of stress-induced martensitic NiTi alloys[J]. Materials Science and Engineering A, 2022, 849(2): 786-791.
[18] ZHAN J B, WU J Z, MA R J, et al.Effect of microstructure on the superelasticity of high-relative-density Ni-rich NiTi alloys fabricated by laser powder bed fusion[J]. Journal of Materials Processing Technology, 2023, 317(4): 672-677.
[19] 鲁璐青, 刘志义, 夏鹏. 高强度织构对2524铝合金疲劳性能的影响[J]. 粉末冶金材料科学与工程, 2017, 22(3): 307-312.
LU Luqing, LIU Zhiyi, XIA Peng.Effect of high strength texture on fatigue properties of 2524 aluminum alloy[J]. Materials Science and Engineering of Powder Metallurgy, 2017, 22(3): 307-312.
[20] SUN S H, ISHIMOTO T, HAGIHARA K, et al.Excellent mechanical and corrosion properties of austenitic stainless steel with a unique crystallographic lamellar microstructure via selective laser melting[J]. Scripta Materialia, 2019, 159(6): 89-93.
[21] SAFAEI K, ANDANI N T, POORGANJI B, et al.Controlling texture of NiTi alloy processed by laser powder bed fusion: smart build orientation and scanning strategy[J]. Additive Manufacturing Letters, 2023, 5(2): 100126.
[22] CHOI W S, PANG E L, KO W S, et al.Orientation- dependent plastic deformation mechanisms and competition with stress-induced phase transformation in microscale NiTi[J]. Acta Materialia, 2021, 208(6): 116731-116739.
[23] SINHA A, RAJAK D K, SHAIK N B, et al.A review on 4D printing of nickel-titanium smart alloy processing, the effect of major parameters and their biomedical applications[J]. Proceedings of the Institution of Mechanical Engineers Part E-Journal of Process Mechanical Engineering, 2023, 456(3): 674-679.
[24] LU H Z, MA H W, YANG Y, et al.Tailoring phase transformation behavior, microstructure, and superelasticity of NiTi shape memory alloys by specific change of laser power in selective laser melting[J]. Materials Science and Engineering A, 2023, 864(2): 236-243.
[25] 刘伟, 刘成松, 丁小明, 等. 激光粉床增材制造不锈钢中氧化物夹杂调控的研究进展[J]. 钢铁研究学报, 2023, 35(5): 489-503.
LIU Wei, LIU Chengsong, DING Xiaoming, et al.Research progress of oxide inclusion control in laser powder bed additive manufacturing of stainless steel[J]. Journal of Iron and Steel Research, 2023, 35(5): 489-503.
[26] 姜沐池, 任德春, 赵晓彧, 等. 激光扫描速度对Ti-Ni形状记忆合金影响规律研究[J]. 稀有金属材料与工程, 2023, 52(4): 1455-1463.
JIANG Muchi, REN Dechun, ZHAO Xiaoyu, et al.Effect of laser scanning speed on Ti-Ni shape memory alloy[J]. Rare Metal Materials and Engineering, 2023, 52(4): 1455-1463.
[27] LIU Z, ZHAO D, WANG P, et al.Additive manufacturing of metals: microstructure evolution and multistage control[J]. Journal of Materials Science & Technology, 2022, 100(3): 224-236.
[28] HAMILTON R F, BIMBER B A, PALMER T A.Correlating microstructure and superelasticity of directed energy deposition additive manufactured Ni-rich NiTi alloys[J]. Journal of Alloys and Compounds, 2018, 739(4): 712-722.
[29] ZHAO Y, GUO K, SUI X, et al.Nonlinear deformation mechanism of Ni50.8Ti shape memory alloy at different temperatures and strain rates[J]. Journal of Materials Engineering and Performance, 2023, 432(2): 523-527.
[30] KOCKAR B, KARAMAN I, KIM J I, et al.Thermomechanical cyclic response of an ultrafine-grained NiTi shape memory alloy[J]. Acta Materialia, 2008, 56(14): 3630-3646.
[31] KANG G, KAN Q, QIAN L, et al.Ratchetting deformation of super-elastic and shape-memory NiTi alloys[J]. Mechanics of Materials, 2009, 41(2): 139-153.
[32] NORFLEET D M, SAROSI P M, MANCHIRAJU S, et al.Transformation-induced plasticity during pseudoelastic deformation in Ni-Ti microcrystals[J]. Acta Materialia, 2009, 57(12): 3549-3561.
[33] SIMON T, KROEGER A, SOMSEN C, et al.On the multiplication of dislocations during martensitic transformations in NiTi shape memory alloys[J]. Acta Materialia, 2010, 58(5): 1850-1860.
[34] WAITZ T, ANTRETTER T, FISCHER F D, et al.Size effects on the martensitic phase transformation of NiTi nanograins[J]. Journal of the Mechanics and Physics of Solids, 2007, 55(2): 419-444.
[35] SEDMÁK P, SITTNER P, PILCH J, et al. Instability of cyclic superelastic deformation of NiTi investigated by synchrotron X-ray diffraction[J]. Acta Materialia, 2015, 94(5): 257-270.
[36] DELVILLE R, MALARD B, PILCH J, et al.Transmission electron microscopy investigation of dislocation slip during superelastic cycling of Ni-Ti wires[J]. International Journal of Plasticity, 2011, 27(2): 282-297.
[37] XU K F, LUO J, LI C, et al.Mechanisms of stress-induced martensitic transformation and transformation-induced plasticity in NiTi shape memory alloy related to superelastic stability[J]. Scripta Materialia, 2022, 217(7): 112-114.
[38] GALL K, SEHITOGLU H.The role of texture in tension-compression asymmetry in polycrystalline NiTi[J]. International Journal of Plasticity, 1999, 15(1): 69-92.
[39] 熊君媛, 徐波, 康国政. 纳米多晶NiTi形状记忆合金超弹性的晶粒取向依赖性相场研究[J]. 固体力学学报, 2021, 42(6): 671-681.
XIONG Junyuan, XU Bo, KANG Guozheng.Study on grain orientation dependent phase field of superelasticity of nano-polycrystalline NiTi shape memory alloys[J]. Chinese Journal of Solid State Mechanics, 2021, 42(6): 671-681.
[40] CAI S, SCHAFFER J E, YU C, et al.Evolution of intergranular stresses in a martensitic and an austenitic NiTi wire during loading-unloading tensile deformation[J]. Metallurgical and Materials Transactions A, 2015, 46(6): 2476-2490.