首页   |   期刊介绍   |   编 委 会   |   投稿指南   |   出版法规   |   出版伦理   |   期刊订阅   |   联系我们   |   留言板   |   广告合作   |   ENGLISH
工艺技术

Ti基镶嵌金刚石颗粒掺硼金刚石电极及其性能

  • 窦金杰 ,
  • 刘典宏 ,
  • 蒋鸾 ,
  • 李静 ,
  • 马莉 ,
  • 魏秋平
展开
  • 1.中南大学 粉末冶金国家重点实验室,长沙 410083;
    2.中南大学 材料科学与工程学院,长沙 410083

收稿日期: 2023-11-07

  修回日期: 2023-11-30

  网络出版日期: 2024-03-26

基金资助

国家“十四五”重点研究发展计划(2021YFB3701800); 国家自然科学基金资助项目(52202056,52274370,52071345,51874370); 广东省“十三五”重点研究开发项目(2020B01085001); 湖南省高新技术产业科技创新引领计划(2022GK4037,2022GK4047); 湖南省自然科学基金资助项目(2023JJ40722); 粉末冶金国家重点实验室自主课题(621022230)

Ti plate embedding diamond particles boron-doped diamond electrode and its properties

  • DOU Jinjie ,
  • LIU Dianhong ,
  • JIANG Luan ,
  • LI Jing ,
  • MA Li ,
  • WEI Qiuping
Expand
  • 1. State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China;
    2. School of Materials Science and Engineering, Central South University, Changsha 410083, China

Received date: 2023-11-07

  Revised date: 2023-11-30

  Online published: 2024-03-26

摘要

利用粉末压片机在Ti片表面镶嵌金刚石颗粒,以此为衬底,通过热丝化学气相沉积技术沉积掺硼金刚石(boron-doped diamond, BDD)薄膜,制备新型Ti基镶嵌金刚石颗粒BDD (Ti/D/BDD)电极,并制备Ti基BDD (Ti/BDD)电极作为对比。采用扫描电子显微镜、拉曼光谱仪和电化学工作站表征电极的形貌、B掺杂水平和电化学性能,利用紫外可见分光光度计测试电极模拟废水降解的效果。结果表明:沉积时间相同时,Ti/D/BDD电极比Ti/BDD电极具有更大的电化学活性面积,更低的薄膜阻抗,使得电极对酸性橙G表现出更高的降解速率,更低的降解能耗。沉积10 h时,Ti/D/BDD电极具有最高的双电层电容(1.87 mF),最低的薄膜电阻(0.4 Ω);降解120 min后,Ti/D/BDD电极的色度移除率比Ti/BDD电极最高可提升53.1%,同时能耗降低14.2%。

本文引用格式

窦金杰 , 刘典宏 , 蒋鸾 , 李静 , 马莉 , 魏秋平 . Ti基镶嵌金刚石颗粒掺硼金刚石电极及其性能[J]. 粉末冶金材料科学与工程, 2024 , 29(1) : 45 -52 . DOI: 10.19976/j.cnki.43-1448/TF.2023077

Abstract

Diamond particles were embeded on the surface of Ti plate by a powder pellet mill, boron-doped diamond (BDD) films were deposited on this substrate by hot filament chemical vapor deposition to prepare a new Ti/D/BDD electrode, and Ti/BDD electrode was prepared for comparision. The morphology, B doping level, and electrochemical performance of the electrode were characterized by scanning electron microscope, Raman spectrometer, and electrochemical workstation, the degradation effect of the electrode simulated wastewater was tested by ultraviolet-visible spectrophotometer. The results show that the Ti/D/BDD electrode has a larger electrochemical active area and lower film impedance than the Ti/BDD electrode at the same deposition time, which makes the electrode show higher degradation rate and lower degradation energy consumption for acid orange G. When deposited for 10 h, Ti/D/BDD electrode has the highest electrical double layer capacitance (1.87 mF) and the lowest film resistance (0.4 Ω); after 120 min of degradation, the chromaticity removal rate of Ti/D/BDD electrode is 53.1% higher than that of Ti/BDD electrode, and the energy consumption is reduced by 14.2%.

参考文献

[1] PANIZZA M, CERISOLA G.Direct and mediated anodic oxidation of organic pollutants[J]. Chemical Reviews, 2009, 109(12): 6541-6569.
[2] RADJENOVIC J, SEDLAK D L.Challenges and opportunities for electrochemical processes as next-generation technologies for the treatment of contaminated water[J]. Environmental Science & Technology, 2015, 49(19): 11292-11302.
[3] 郑子恩, 熊鑫, 周志刚, 等. UV/PMS/电化学高级氧化体系深度处理高盐有机废水[J]. 水处理技术, 2023, 49(6): 13742-13749.
ZHENG Zien, XIONG Xin, ZHOU Zhigang, et al.UV/Persulfate assist electrochemical oxidation coupling process to effectively treat pickle wastewater[J]. Technology of Water Treatment, 2023, 49(6): 13742-13749.
[4] DEWIL R, MANTZAVINOS D, POULIOS I, et al.New perspectives for advanced oxidation processes[J]. Journal of Environmental Management, 2017, 195(2): 93-99.
[5] YANG N J, FOORD J S, JIANG X.Diamond electrochemistry at the nanoscale: a review[J]. Carbon, 2016, 99: 90-110.
[6] GANIYU S O, DOS SANTOS E V A, MARTINEZ- HUITLE C R, et al. Opportunities and challenges of thin-film boron-doped diamond electrochemistry for valuable resources recovery from waste: organic, inorganic, and volatile product electrosynthesis[J]. Current Opinion in Electrochemistry, 2022, 32: 100903.
[7] HU Z Z, CAI J J, SONG G, et al.Anodic oxidation of organic pollutants: anode fabrication, process hybrid and environmental applications[J]. Current Opinion in Electrochemistry, 2021, 26: 100659.
[8] JIAN Z, HEIDE M, YANG N J, et al.Diamond fibers for efficient electrocatalytic degradation of environmental pollutants[J]. Carbon, 2021, 175(30): 36-42.
[9] VERNASQUI L G, SARDINHA A F, OISHI S S, et al.Nanoscale control of high-quality boron-doped ultrananodiamond on dioxide titanium nanotubes as a porous composite[J]. Journal of Materials Research and Technology, 2021, 12: 597-612.
[10] ZHANG J, YU X, ZHANG Z Q, et al.Preparation of boron-doped diamond foam film for supercapacitor applications[J]. Applied Surface Science, 2020, 506(15): 144645.
[11] ZHANG J, YU X, ZHAO Z Y, et al.Influence of pore size of Ti substrate on structural and capacitive properties of Ti/boron doped diamond electrode[J]. Journal of Alloys and Compounds, 2019, 777(10): 84-93.
[12] BRITO C N, FERREIRA M B, MARCIONILIO S, et al.Electrochemical oxidation of acid violet 7 dye by using Si/BDD and Nb/BDD electrodes[J]. Journal of the Electrochemical Society, 2018, 165(5): 250-255.
[13] YANG W L, TAN J L, CHEN Y H, et al.Relationship between substrate type and BDD electrode structure, performance and antibiotic tetracycline mineralization[J]. Journal of Alloys and Compounds, 2022, 890(15): 161760.
[14] WEI J J, LI C M, GAO X H, et al.The influence of boron doping level on quality and stability of diamond film on Ti substrate[J]. Applied Surface Science, 2012, 258(18): 6909-6913.
[15] YANG W L, DENG Z J, WANG Y J, et al.Porous boron-doped diamond for efficient electrocatalytic elimination of azo dye orange G[J]. Separation and Purification Technology, 2022, 293(15):121100.
[16] HE Y P, HUANG W M, CHEN R L, et al.Enhanced electrochemical oxidation of organic pollutants by boron-doped diamond based on porous titanium[J]. Separation and Purification Technology, 2015, 149(27): 124-131.
[17] HUANG W M, LIN H B.Effect of Structure of Ti/Boron-doped diamond electrode on the electrochemical degradation performance for aspirin[J]. Chemical Journal of Chinese Universities-Chinese, 2015, 36(9): 1765-1770.
[18] LI X J, LI H J, LI M J, et al.Preparation of a porous boron-doped diamond/Ta electrode for the electrocatalytic degradation of organic pollutants[J]. Carbon, 2018, 129: 543-551.
[19] TANG Y L, LIU M L, HE D L, et al.Efficient electrochemical degradation of X-GN dye wastewater using porous boron-doped diamond electrode[J]. Chemosphere, 2022, 307(2): 135912.
[20] 刘婷, 苗冬田, 魏秋平, 等. 高温刻蚀硼掺杂金刚石电极材料的形貌与电化学性能[J]. 粉末冶金材料科学与工程, 2020, 25(2): 164-170.
LIU Ting, MIAO Dongtian, WEI Qiuping, et al.Morphology and electrochemical performance of high temperature etching boron doped diamond electrode materials[J]. Materials Science and Engineering of Powder Metallurgy, 2020, 25(2): 164-170.
[21] LIM P Y, LIN F Y, SHIH H C, et al.Improved stability of titanium based boron-doped chemical vapor deposited diamond thin-film electrode by modifying titanium substrate surface[J]. Thin Solid Films, 2008, 516(18): 6125-6132.
[22] PLESKOV Y V, EVSTEFEEVA Y E, KROTOVA M D, et al.Synthetic diamond electrodes: the effect of surface microroughnesson the electrochemical properties of CVD diamond thin films on titanium[J]. Journal of Applied Electrochemistry, 2005, 35(9): 857-864.
[23] LI H C, YANG W L, MA L, et al.3D-printed highly ordered Ti networks-based boron-doped diamond: an unprecedented robust electrochemical oxidation anode for decomposition of refractory organics[J]. Chemical Engineering Journal, 2021, 426(15): 131479.
[24] MEI R Q, WEI Q P, ZHU C W, et al.3D macroporous boron-doped diamond electrode with interconnected liquid flow channels: a high-efficiency electrochemical degradation of RB-19 dye wastewater under low current[J]. Applied Catalysis B-Environmental, 2019, 245(15): 420-427.
[25] 史新伟, 安子凤, 张水, 等. 甲烷浓度对金刚石薄膜质量的影响[J]. 真空, 2011, 48(5): 64-67.
SHI Xinwei, AN Zifeng, ZHANG Shui, et al.Effect of methane concentration on the performance of diamond films prepared by MPCVD[J]. Vacuum, 2011, 48(5): 64-67.
[26] LU X R, DING M H, ZHANG L, et al.Optimizing the microstructure and corrosion resistance of BDD coating to improve the service life of Ti/BDD coated electrode[J]. Materials, 2019, 12(19): 3188.
[27] BARTON J, KRYSOVA H, JANDA P, et al.Chemical modification of diamond surface by a donor-acceptor organic chromophore (P1): optimization of surface chemistry and electronic properties of diamond[J]. Applied Materials Today, 2018, 12: 153-162.
[28] SUN J R, LU H Y, DU L L, et al.Anodic oxidation of anthraquinone dye alizarin red S at Ti/BDD electrodes[J]. Applied Surface Science, 2011, 257(15): 6667-6671.
[29] XIE J Z, ZHANG C T, WAITE T D.Hydroxyl radicals in anodic oxidation systems: generation, identification and quantification[J]. Water Research, 2022, 217(15): 118425.
[30] BOGDANOWICZ R, FABIANSKA A, GOLUNSKI L, et al.Influence of the boron doping level on the electrochemical oxidation of the azo dyes at Si/BDD thin film electrodes[J]. Diamond and Related Materials, 2013, 39: 82-88.
[31] MATSUSHIMA J T, SILVA W M, AZEVEDO A F, et al.The influence of boron content on electroanalytical detection of nitrate using BDD electrodes[J]. Applied Surface Science, 2009, 256(3): 757-762.
文章导航

/

版权所有 © 《粉末冶金材料科学与工程》编辑部
地址:长沙市麓山南路中南大学粉末冶金研究院 邮编:410083 电话:0731-88877163 邮箱:pmbjb@csu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn