首页   |   期刊介绍   |   编 委 会   |   投稿指南   |   出版法规   |   出版伦理   |   期刊订阅   |   联系我们   |   留言板   |   广告合作   |   ENGLISH
理论研究

Co8W6Mo5Cr4V3粉末高速钢的热变形行为

  • 杨礼林 ,
  • 陈学敏 ,
  • 陈朔 ,
  • 赵莉萍
展开
  • 内蒙古科技大学 材料与冶金学院,包头 014010

收稿日期: 2023-07-16

  修回日期: 2023-11-19

  网络出版日期: 2024-03-26

基金资助

内蒙古自治区科技创新引导奖励资金项目(0902062001); 内蒙古科技大学创新基金(2019QDL-B05)

Hot deformation behavior of Co8W6Mo5Cr4V3 powder high speed steel

  • YANG Lilin ,
  • CHEN Xuemin ,
  • CHEN Shuo ,
  • ZHAO Liping
Expand
  • School of Materials and Metallurgy, Inner Mongolia University of Science and Technology, Baotou 014010, China

Received date: 2023-07-16

  Revised date: 2023-11-19

  Online published: 2024-03-26

摘要

采用熔炼、电渣重熔和气雾化法制备Co8W6Mo5Cr4V3粉末,再通过热等静压制备Co8W6Mo5Cr4V3粉末高速钢。在不同变形条件下进行热压缩实验,研究粉末高速钢的热变形行为,根据获得的应力-应变曲线,建立热变形本构方程,绘制热加工图。结果表明:Co8W6Mo5Cr4V3粉末高速钢的流变应力随变形温度升高或应变速率减小而减小;通过本构方程预测的流变应力和实验得到的流变应力间的相关系数为0.995,可用此方程对粉末高速钢在不同变形条件下的应力进行预测;根据热加工图,粉末高速钢最优的变形温度为1 100~1 150 ℃,应变速率为0.1~1.0 s-1

本文引用格式

杨礼林 , 陈学敏 , 陈朔 , 赵莉萍 . Co8W6Mo5Cr4V3粉末高速钢的热变形行为[J]. 粉末冶金材料科学与工程, 2024 , 29(1) : 11 -19 . DOI: 10.19976/j.cnki.43-1448/TF.2023064

Abstract

Co8W6Mo5Cr4V3 powder was prepared by melting, electroslag remelting, and gas atomization method, then Co8W6Mo5Cr4V3 powder high speed steel was prepared by hot isostatic pressing. Its thermal deformation behavior was studied through hot compression experiments that were conducted on the powder high speed steel under different deformation conditions. Based on the obtained stress-strain curves, a thermal deformation constitutive equation was established and a hot processing map was drawn. The results show that the flow stress of Co8W6Mo5Cr4V3 powder high speed steel decreases with the increase of deformation temperature or the decrease of strain rate. The correlation coefficient between the predicted flow stress through the constitutive equation and the experimental flow stress is 0.995, which can be used to predict the stress of powder high speed steel under different deformation conditions. According to the hot processing map, the optimal deformation temperature and strain rate of powder high speed steel are 1 100-1 150 ℃ and 0.1-1.0 s-1, respectively.

参考文献

[1] 秦乾, 杨芳, 陈存广, 等. 粉末高速钢的制备技术及发展方向[J]. 粉末冶金工业, 2022, 32(4): 67-75.
QIN Qian, YANG Fang, CHEN Cunguang, et al.Preparation technology and development direction of powder high-speed steel[J]. Powder Metallurgy Industry, 2022, 32(4): 67-75.
[2] 孙海霞. 粉末高速钢的制备及组织性能的研究[D].北京: 北京科技大学, 2021.
SUN Haixia.Study on the preparation, microstructure and performance of powder metallurgy high speed steel[D]. Beijing: University of Science and Technology Beijing, 2021.
[3] 赵文涛. M2高速钢中碳化物的演变规律研究[D]. 镇江: 江苏大学, 2021.
ZHAO Wentao.Study on evolution rule of carbides in high speed steel M2[D]. Zhenjiang: Jiangsu University, 2021.
[4] 宋繁策, 李鉴霖, 韩金科, 等. AlFeCoNiMo0.2高熵合金热变形行为及热加工图[J]. 精密成形工程, 2021, 13(6): 91-97.
SONG Fance, LI Jianlin, HAN Jinke, et al.Hot deformation behavior and processing map of AlFeCoNiMo0.2 high-entropy alloy[J]. Journal of Netshape Forming Engineering, 2021, 13(6): 91-97.
[5] 林莺莺, 东赟鹏, 于秋颖, 等. 铸态GH4175合金高温变形行为及热加工图研究[J]. 精密成形工程, 2022, 14(1): 133-140.
LIN Yingying, DONG Yunpeng, YU Qiuying, et al.High temperature deformation behavior and hot processing map of as-cast GH4175 alloy[J]. Journal of Netshape Forming Engineering, 2022, 14(1): 133-140.
[6] 王欣, 葛学元, 王淼辉, 等. S390粉末高速钢高温变形流动应力行为与预测[J]. 锻压技术, 2021, 46(1): 154-163.
WANG Xin, GE Xueyuan, WANG Miaohui, et al.Flow stress behavior and prediction of S390 powder metallurgy high speed steel at high temperature deformation[J]. Forging and Stamping Technology, 2021, 46(1): 154-163.
[7] 陈楠, 龙学湖, 滕浩, 等. Mo2C增强M2高速钢球磨粉末的致密化及力学性能[J]. 粉末冶金材料科学与工程, 2022, 27(2): 161-170.
CHEN Nan, LONG Xuehu, TENG Hao, et al.Densification and mechanical properties of ball milled M2 high speed steel powder reinforced with Mo2C[J]. Materials Science and Engineering of Powder Metallurgy, 2022, 27(2): 161-170.
[8] 王坚, 周芸, 马党参, 等. M35高速钢的热变形行为研究[J]. 塑性工程学报, 2016, 23(6): 143-150.
WANG Jian, ZHOU Yun, MA Dangshen, et al.Hot deformation behaviors of M35 high speed steel[J]. Journal of Plasticity Engineering, 2016, 23(6): 143-150.
[9] 刘延辉, 姚泽坤, 宁永权, 等. 粉末冶金高速钢的热变形行为[J]. 材料热处理学报, 2014, 35(4): 62-66.
LIU Yanhui, YAO Zekun, NING Yongquan, et al.Hot deformation behavior of powder metallurgy high speed steel[J]. Transactions of Materials and Heat Treatment, 2014, 35(4): 62-66.
[10] 吴明慧. 电子束熔炼M35高速钢的热变形特征的研究[J]. 钢铁钒钛, 2021, 42(4): 182-190.
WU Minghui.Study on the hot deformation characteristics of M35 high speed steel by electron beam smelting[J]. Iron Steel Vanadium Titanium, 2021, 42(4): 182-190.
[11] 王宝, 杨艳, 彭晓东, 等. 挤压态Mg-9Li-3Al-1.6Y合金的热变形行为[J]. 兵器材料科学与工程, 2017, 40(4): 64-69.
WANG Bao, YANG Yan, PENG Xiaodong, et al.Deformation behavior of extruded Mg-9Li-3Al-1.6Y alloy at elevated temperature[J]. Ordnance Material Science and Engineering, 2017, 40(4): 64-69.
[12] SELLARS C M, MCTEGART W J.On the mechanism of hot deformation[J]. Acta Metallurgica, 1966, 14(9): 1136-1138.
[13] 王春霞, 于福晓, 赵骧, 等. 半连续铸造Al-15Si合金热压缩变形流变应力行为[J]. 东北大学学报(自然科学版), 2012, 33(6): 827-831.
WANG Chunxia, YU Fuxiao, ZHAO Xiang, et al.Flow stress feature of DC cast Al-15Si alloy under hot compression deformation[J]. Journal of Northeastern University (Natural Science), 2012, 33(6): 827-831.
[14] PRASAD Y V, GEGEL H L, DORAIVELU S M, et al.Modeling of dynamic material behavior in hot deformation: forging of Ti-6242[J]. Metallurgical Transactions A, 1984, 15(10): 1883-1892.
[15] 林武, 李红英, 曾翠婷, 等. 一种低碳微合金管线钢的热变形行为[J]. 中南大学学报(自然科学版), 2010, 41(3): 940-947.
LIN Wu, LI Hongying, ZENG Cuiting, et al.Hot deformation behavior for a kind of low carbon micro-alloy pipeline steel[J]. Journal of Central South University (Science and Technology), 2010, 41(3): 940-947.
[16] 马超. 喷射成形M42高速钢热加工工艺研究[D]. 上海: 上海交通大学, 2012.
MA Chao.Researching about hot working process of the spray formed M42 steel[D]. Shanghai: Shanghai Jiaotong University, 2012.
文章导航

/

版权所有 © 《粉末冶金材料科学与工程》编辑部
地址:长沙市麓山南路中南大学粉末冶金研究院 邮编:410083 电话:0731-88877163 邮箱:pmbjb@csu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn