首页   |   期刊介绍   |   编 委 会   |   投稿指南   |   出版法规   |   出版伦理   |   期刊订阅   |   联系我们   |   留言板   |   广告合作   |   ENGLISH
工艺技术

SiC晶须增强高熵合金黏结Ti(C,N)金属陶瓷的性能研究

  • 周星宇 ,
  • 刘美玲 ,
  • 曹雅璟 ,
  • 张奇伟 ,
  • 陈晨梓
展开
  • 1.北方民族大学 材料科学与工程学院,银川 750021;
    2.北方民族大学 粉体材料与特种陶瓷省部共建重点实验室,银川 750021

收稿日期: 2023-10-07

  修回日期: 2023-10-30

  网络出版日期: 2024-01-23

基金资助

宁夏回族自治区大学生创新创业训练项目(S202211407002); 北方民族大学中央高校基本科研业务费专项资金资助项目(2022XYZCL04)

Study on performance of SiC whisker reinforced high entropy alloy bonded Ti(C,N) cermet

  • ZHOU Xingyu ,
  • LIU Meiling ,
  • CAO Yajing ,
  • ZHANG Qiwei ,
  • CHEN Chenzi
Expand
  • 1. School of Materials Science and Engineering, North Minzu University, Yinchuan 750021, China;
    2. Key Laboratory of Powder Material and Advanced Ceramics, North Minzu University, Yinchuan 750021, China

Received date: 2023-10-07

  Revised date: 2023-10-30

  Online published: 2024-01-23

摘要

为改善高熵合金黏结金属陶瓷抗弯强度低的缺点,在Al0.1CoCrFeNiV0.1黏结Ti(C,N)金属陶瓷中加入SiC晶须,研究SiC晶须对金属陶瓷物相、显微结构、力学性能和摩擦磨损性能的影响。结果表明:少量SiC晶须的加入能促进碳化物固溶和细化Ti(C,N)晶粒,但加入量过大会导致固溶体成团。w(SiC)=1%时,金属陶瓷的抗弯强度和断裂韧性显著提高,抗弯强度的提高率达到21.4%;在摩擦过程中,金属陶瓷表面会形成连续光滑的摩擦膜,摩擦因数低且稳定,磨损率接近10-6数量级。

本文引用格式

周星宇 , 刘美玲 , 曹雅璟 , 张奇伟 , 陈晨梓 . SiC晶须增强高熵合金黏结Ti(C,N)金属陶瓷的性能研究[J]. 粉末冶金材料科学与工程, 2023 , 28(6) : 554 -564 . DOI: 10.19976/j.cnki.43-1448/TF.2023074

Abstract

In order to improve the bending strength of high entropy alloy bonded cermet, SiC whiskers were added in Al0.1CoCrFeNiV0.1 bonded Ti(C,N) cermet, and the effects of SiC whiskers on the phase, microstructure, mechanical performance, and friction and wear performance of cermet were studied. The results show that few addition of SiC whiskers can promote the solid solution of carbide and refine the Ti(C,N) grains, but the excessive addition brings clusters of solid solution. When w(SiC)=1%, the bending strength and fracture toughness of cermet are evidently improved, the increasing rate of bending strength is 21.4%; during the process of friction, the cermet forms continuous and smooth tribolayer on the surface, exhibiting low and stable friction coefficient with wear ratio nearly to 10-6 level.

参考文献

[1] 孙东哲, 杨青青, 熊惟皓, 等. Ti(C,N)基金属陶瓷的组织结构与合金化[J]. 材料导报, 2013, 27(10): 125-129.
SUN Dongzhe, YANG Qingqing, XIONG Weihao, et al.Microstructure and alloying of TiCN-based cermets[J]. Materials Reports, 2013, 27(10): 125-129.
[2] PENG Y, MIAO H Z, PENG Z J.Development of TiCN- based cermets: mechanical properties and wear mechanism[J]. International Journal of Refractory Metals and Hard Materials, 2013, 39: 78-89.
[3] LIU N, CHAO S, YANG H D.Cutting performances, mechanical property and microstructure of ultra-fine grade Ti(C,N)-based cermets[J]. International Journal of Refractory Metals and Hard Materials, 2006, 24(6): 445-452.
[4] 文晓. Ti(CxN1-x)基金属陶瓷刀具材料的应用研发[J]. 中国材料进展, 2019, 38(8): 813-818.
WEN Xiao.Development and application of Ti(CxN1-x) based cermet[J]. Materials China, 2019, 38(8): 813-818.
[5] DIOS M, KRALEVA I, GONZÁLEZ Z, et al. Mechanical characterization of Ti(C,N)-based cermets fabricated through different colloidal processing routes[J]. Journal of Alloys and Compounds, 2018, 732: 806-817.
[6] XU Q Z, ZHAO J, AI X.Fabrication and cutting performance of Ti(C,N)-based cermet tools used for machining of high-strength steels[J]. Ceramics International, 2017, 43(8): 6286-6294.
[7] 王守文, 郑勇, 丁伟民, 等. Ti(C,N)固溶体的N/C原子比对Ti(C,N)基金属陶瓷组织及力学性能的影响[J]. 硬质合金, 2018, 35(2): 79-85.
WANG Shouwen, ZHENG Yong, DING Weimin, et al.Effect of N/C atom ratio of Ti(C,N) solid solution on microstructure and mechanical properties of Ti(C,N)-based cermet[J]. Cemented Carbide, 2018, 35(2): 79-85.
[8] ARCHANA M S, SRIKANTHB V V S S, JOSHI S V, et al. Influence of applied pressure during field-assisted sintering of Ti(C,N)-WC-FeAl based nanocomposite[J]. Ceramics International, 2015, 41(2): 1986-1993.
[9] 郑东海, 唐愈. 高熵合金CoCrFeNiTiAl粘结WC硬质合金的制备与研究[J]. 粉末冶金工业, 2022, 32(6): 16-20, 28.
ZHENG Donghai, TANG Yu.Preparation and research of high-entropy alloy CoCrFeNiTiAl bonded WC cemented carbide[J]. Powder Metallurgy Industry, 2022, 32(6): 16-20, 28.
[10] HUANG B, XIONG W H, YANG Q Q, et al.Preparation, microstructure and mechanical properties of multicomponent Ni3Al-bonded cermets[J]. Ceramics International, 2014, 40(9): 14073-14081.
[11] CHENG H, LIU X Q, TANG Q H, et al.Microstructure and mechanical properties of FeCoCrNiMnAlx high-entropy alloys prepared by mechanical alloying and hot-pressed sintering[J]. Journal of Alloys and Compounds, 2019, 775: 742-751.
[12] 温雪龙, 于兴晨, 巩亚东, 等. FeCoNiCrMo高熵合金磨削机理及表面粗糙度[J]. 东北大学学报(自然科学版), 2020, 41(2): 246-251.
WEN Xuelong, YU Xingchen, GONG Yadong, et al.Grinding mechanism and surface roughness of FeCoNiCrMo high-entropy alloy[J]. Journal of Northeastern University (Natural Science Edition), 2020, 41(2): 246-251.
[13] LI C, CHEN S H, WU Z W, et al.Development of high- strength WNbMoTaVZrx refractory high entropy alloys[J]. Journal of Materials Research, 2022, 37(9): 1664-1678.
[14] 杨静怡, 原一高, 张建国. CoCrFeNi基高熵合金熔体在碳化钨表面的润湿性能[J]. 东华大学学报(自然科学版), 2023, 49(1): 58-63, 69.
YANG Jingyi, YUAN Yigao, ZHANG Jianguo.Wettability of CoCrFeNi-based high-entropy alloy melt on the surface of tungsten carbide[J]. Journal of Donghua University (Natural Science Edition), 2023, 49(1): 58-63, 69.
[15] ZHU G, SUN S X, CHEN J L, et al.Enhanced mechanical properties of Ti(C,N)-based cermets with multi-component AlCoCrFeNi high-entropy alloys binder[J]. Key Engineering Materials, 2017, 727: 149-153.
[16] LIU B, WANG J S, CHEN J, et al.Ultra-high strength TiC/refractory high-entropy-alloy composite prepared by powder metallurgy[J]. Journal of Metals, 2017, 69(4): 651-656.
[17] ZHU G, LIU Y, YE J W.Early high-temperature oxidation behavior of Ti(C,N)-based cermets with multi-component AlCoCrFeNi high-entropy alloy binder[J]. International Journal of Refractory Metals and Hard Materials, 2014, 44: 35-41.
[18] FU Z Z, KOC R.Processing and characterization of TiB2-TiNiFeCrCoAl high-entropy alloy composite[J]. Journal of the American Ceramic Society, 2017, 100(7): 2803-2813.
[19] 刘美玲, 海万秀, 陈宇红. TiNbTaZrAl高熵合金黏结剂对Ti(C,N)基金属陶瓷性能的影响[J]. 中国有色金属学报, 2022, 32(5): 1360-1372.
LIU Meiling, HAI Wanxiu, CHEN Yuhong.Effect of TiNbTaZrAl high entropy alloy binder on properties of Ti(C,N)-based cermets[J]. The Chinese Journal of Nonferrous Metals, 2022, 32(5): 1360-1372.
[20] 刘咏, 曹远奎, 吴文倩, 等. 粉末冶金高熵合金研究进展[J]. 中国有色金属学报, 2019, 29(9): 2155-2184.
LIU Yong, CAO Yuankui, WU Wenqian, et al.Progress of powder metallurgical high entropy alloys[J]. The Chinese Journal of Nonferrous Metals, 2019, 29(9): 2155-2184.
[21] 江汉文, 俞星星, 薛名山, 等. 碳化硅在导热材料中的应用及其最新研究进展[J]. 南昌航空大学学报(自然科学版), 2021, 35(2): 51-60.
JIANG Hanwen, YU Xingxing, XUE Mingshan, et al.Application of silicon carbide in thermally conductive materials and its latest research progress[J]. Journal of Nanchang Hangkong University (Natural Science Edition), 2021, 35(2): 51-60.
[22] 刘倩, 陈思安, 潘勇. SiC/CVD SiC复合涂层的抗氧化及抗热震性能研究[J]. 宇航总体技术, 2021, 5(2): 39-48.
LIU Qian, CHEN Sian, PAN Yong.Study on oxidation resistance and thermal shock resistance of SiC/CVD SiC composite coating[J]. Aerospace Technology in General, 2021, 5(2): 39-48.
[23] JIA J H, BAI S X, XIONG D G, et al.Microstructure and ablation behaviour of a Cf/SiC-Al composite prepared by infiltrating Al alloy into Cf/SiC[J]. Journal of Alloys and Compounds, 2022, 895: 162430.
[24] 姜卓钰, 束小文, 吕晓旭, 等. SiC晶须增强SiCf/SiC复合材料的力学性能[J]. 材料工程, 2021, 49(8): 89-96.
JIANG Zhuoyu, SHU Xiaowen, LÜ Xiaoxu, et al.SiC whiskers enhance the mechanical properties of SiCf/SiC composites[J]. Materials Engineering, 2021, 49(8): 89-96.
[25] 姜卓钰, 吕晓旭, 周怡然, 等. PIP工艺制备SiC晶须增强SiCf/SiC复合材料的性能[J]. 航空材料学报, 2021, 41(2): 82-88.
JIANG Zhuoyu, LÜ Xiaoxu, ZHOU Yiran, et al.The performance of SiC whisker-reinforced SiCf/SiC composites was prepared by PIP process[J]. Journal of Aeronautical Materials, 2021, 41(2): 82-88.
[26] 孙国元, 刘超锋, 杨莉. 切削铸铁的复合刀具及涂层刀具[J]. 铸造技术, 2009, 30(9): 1188-1191.
SUN Guoyuan, LIU Chaofeng, YANG Li.Composite tools and coating tools for cutting cast iron[J]. Casting Technology, 2009, 30(9): 1188-1191.
[27] 蒋烨, 陈可, 王伟. 机械合金化法制备AlCoNiFeCr高熵合金涂层[J]. 中国有色金属学报, 2018, 28(9): 1784-1790.
JIANG Ye, CHEN Ke, WANG Wei.Preparation of AlCoNiFeCr high entropy alloy coating by mechanical alloying[J]. The Chinese Journal of Nonferrous Metals, 2018, 28(9): 1784-1790.
[28] SCHUBERT W D, NEUMEISTER H, KINGER G, et al.Hardness to toughness relationship of fine-grained WC-Co hardmetals[J]. International Journal of Refractory Metals and Hard Materials, 1998, 16(2): 133-142.
[29] 张楠楠, 郝德喜, 马永亮, 等. AlCoCrFeNiV高熵合金涂层制备及力学性能[J]. 沈阳工业大学学报, 2021, 43(6): 641-645.
ZHANG Nannan, HAO Dexi, MA Yongliang, et al.Preparation and mechanical properties of AlCoCrFeNiV high entropy alloy coating[J]. Journal of Shenyang University of Technology, 2021, 43(6): 641-645.
[30] XU X Y, ZHONG Y, ZHANG G T, et al.Effect of WC addition and cooling rate on microstructure, magnetic and mechanical properties of Ti(C0.6,N0.4)-WC-Mo-Ni cermets[J]. International Journal of Refractory Metals and Hard Materials, 2019, 84: 105001.
[31] PENG Y, PENG Z J, REN X Y, et al.Effect of SiC nano-whisker addition on TiCN-based cermets prepared by spark plasma sintering[J]. International Journal of Refractory Metals and Hard Materials, 2012, 34: 36-40.
[32] 龚涤凡, 李詠侠, 杨海林, 等. 纳米SiC对Ti(C,N)基金属陶瓷微观组织与性能的影响[J]. 粉末冶金材料科学与工程, 2020, 25(4): 321-329.
GONG Difan, LI Yongxia, YANG Hailin, et al.Nano-SiC addition on microstructure, mechanical properties and high temperature oxidation resistance of Ti(C,N)-based cermets[J]. Materials Science and Engineering of Powder Metallurgy, 2020, 25(4): 321-329.
[33] 许俊华, 曹峻, 喻利花. 磁控溅射制备TiCN复合膜的微结构与性能[J]. 中国有色金属学报, 2012, 22(11): 3123-3128.
XU Junhua, CAO Jun, YU Lihua.Microstructure and properties of TiCN composite films prepared by magnetron sputtering[J]. The Chinese Journal of Nonferrous Metals, 2012, 22(11): 3123-3128.
[34] 贾丛丛, 王恩青, 葛芳芳, 等. Si含量对CrSiN涂层结构和性能的影响[J]. 表面技术, 2016, 45(1): 62-68.
JIA Congcong, WANG Enqing, GE Fangfang, et al.Influence of Si content on structure and properties of CrSiN coatings[J]. Surface Technology, 2016, 45(1): 62-68.
[35] LUO W Y, LIU Y Z, LUO Y, et al.Fabrication and characterization of WC-AlCoCrCuFeNi high-entropy alloy composites by spark plasma sintering[J]. Journal of Alloys and Compounds, 2018, 754: 163-170.
[36] 刘兵, 张茜, 陈慧, 等. 亚微米级SiC颗粒对Ti(C,N)基金属陶瓷材料性能和结构的影响研究[J]. 粉末冶金技术, 2015, 33(3): 170-175.
LIU Bing, ZHANG Qian, CHEN Hui, et al.Study on the effect of sub-micro SiC particle on the properties and microstructure of Ti(C,N)-based cermet[J]. Powder Metallurgy Technology, 2015, 33(3): 170-175.
[37] HAI W X, CHEN H, LU J, et al.Tribological behavior of ZrB2-SiC composite with different tribo-pair[J]. Tribology, 2017, 37: 581-586.
[38] 肖琪聃, 吕振林, 于源. 熔渗烧结Ti3SiC2陶瓷材料的摩擦磨损性能研究[J]. 摩擦学学报, 2010, 30(4): 367-372.
XIAO Qidan, LÜ Zhenlin, YU Yuan.Friction and wear characteristics of Ti3SiC2 by infiltration sintering[J]. Tribology, 2010, 30(4): 367-372.
[39] 李巍, 吴名冬, 刘超, 等. TiCN基金属陶瓷的高温摩擦磨损性能研究[J]. 应用技术学报, 2021, 21(1): 37-40, 61.
LI Wei, WU Mingdong, LIU Chao, et al.Study on high temperature friction and wear properties of TiCN-based cermets[J]. Journal of Applied Technology, 2021, 21(1): 37-40, 61.
文章导航

/

版权所有 © 《粉末冶金材料科学与工程》编辑部
地址:长沙市麓山南路中南大学粉末冶金研究院 邮编:410083 电话:0731-88877163 邮箱:pmbjb@csu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn