[1] WANG T, PAN X, BEN W, et al.Adsorptive removal of antibiotics from water using magnetic ion exchange resin[J]. Journal of Environmental Sciences, 2017, 52: 111-117.
[2] ZHENG Y, LIN L H, WANG B, et al.Graphitic carbon nitride polymers toward sustainable photoredox catalysis[J]. Angewandte Chemie-International Edition, 2015, 54(44): 12868-12884.
[3] BAI S, JIANG J, ZHANG Q, et al.Steering charge kinetics in photocatalysis: intersection of materials syntheses, characterization techniques and theoretical simulations[J]. Chemical Society Reviews, 2015, 44(10): 2893-2939.
[4] LIU B, CHENG K, NIE S, et al.Ice-water quenching induced Ti3+ self-doped TiO2 with surface lattice distortion and the increased photocatalytic activity[J]. The Journal of Physical Chemistry C, 2017, 121(36): 19836-19848.
[5] WANG W, LU C H, NI Y R, et al.Enhanced visible-light photoactivity of {001} facets dominated TiO2 nanosheets with even distributed bulk oxygen vacancy and Ti3+[J]. Catalysis Communications, 2012, 22: 19-23.
[6] 刘保顺, 何鑫, 赵修建, 等. 热处理对TiO2溅射薄膜结构和光谱性能的影响[J]. 稀有金属材料与工程, 2005(9): 1451-1454.
LIU Baoshun, HE Xin, ZHAO Xiujian, et al.The effect of the d-electron transition on UV-Vis spectra and PL spectra of TiO2 films[J]. Rare Materials and Engineering, 2005(9): 1451-1454.
[7] 官仁发, 肖亚, 刘启明, 等. Cu/Ag掺杂TiO2包覆SiO2纳米复合材料的结构与光催化性能[J]. 粉末冶金材料科学与工程, 2018, 23(1): 101-109.
GUAN Renfa, XIAO Ya, LIU Qiming, et al.Synthesis and photocatalytic property of SiO2 nanopowder coated by Cu/Ag-doped TiO2[J]. Materials Science and Engineering of Powder Metallurgy, 2018, 23(1): 101-109.
[8] LI D, HANEDA H, LABHSETWAR N K, et al.Visible-light-driven photocatalysis on fluorine-doped TiO2 powders by the creation of surface oxygen vacancies[J]. Chemical Physics Letters, 2005, 401(4/6): 579-584.
[9] ZUO F, WANG L, WU T, et al.Self-doped Ti3+ enhanced photocatalyst for hydrogen production under visible light[J]. Journal of the American Chemical Society, 2010, 132(34): 11856-11857.
[10] LIU H, MA H T, LI X Z, et al.The enhancement of TiO2 photocatalytic activity by hydrogen thermal treatment[J]. Chemosphere, 2003, 50(1): 39-46.
[11] PERIYAT P, BAIJU K V, MUKUNDAN P, et al.Aqueous colloidal sol-gel route to synthesize nanosized ceria-doped titania having high surface area and increased anatase phase stability[J]. Journal of Sol-Gel Science and Technology, 2007, 43(3): 299-304.
[12] CHEN X, LIU L, YU P Y, et al.Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals[J]. Science, 2011, 331(6018): 746-750.
[13] ZHU Y, LIU D, MENG M.H2 spillover enhanced hydrogenation capability of TiO2 used for photocatalytic splitting of water: a traditional phenomenon for new applications[J]. Chemical Communications, 2014, 50(45): 6049-6051.
[14] LESHUK T, PARVIZ R, EVERETT P, et al.Photocatalytic activity of hydrogenated TiO2[J]. ACS Applied Materials & Interfaces, 2013, 5(6): 1892-1895.
[15] MYUNG S T, KIKUCHI M, YOON C S, et al.Black anatase titania enabling ultra high cycling rates for rechargeable lithium batteries[J]. Energy & Environmental Science, 2013, 6(9): 2609-2614.
[16] KUTTY T R N, VIVEKANANDAN R, MURUGARAJ P. Precipitation of rutile and anatase (TiO2) fine powders and their conversion to MTiO3 (M=Ba, Sr, Ca) by the hydrothermal method[J]. Materials Chemistry and Physics, 1988, 19(6): 533-546.
[17] MARIANA H R, ROBERTO C S, RUIZ F, et al.H2Ti3O7 nanotubes decorated with silver nanoparticles for photocatalytic degradation of atenolol[J]. Journal of Nanomaterials, 2017, 2017: 9610419.
[18] LEBEDEV V A, KOZLOV D A, KOLESNIK I V, et al.The amorphous phase in titania and its influence on photocatalytic properties[J]. Applied Catalysis B: Environmental, 2016, 195: 39-47.
[19] MEKASUWANDUMRONG O, CHAITAWORN S, PANPRANOT J, et al.Photocatalytic liquid-phase selective hydrogenation of 3-nitrostyrene to 3-vinylaniline of various treated-TiO2 without use of reducing gas[J]. Catalysts, 2019, 9(4): 329.
[20] QIN X, JING L, TIAN G, et al.Enhanced photocatalytic activity for degrading Rhodamine B solution of commercial Degussa P25 TiO2 and its mechanisms[J]. Journal of Hazardous Materials, 2009, 172(2): 1168-1174.
[21] HANAOR D A H, SORRELL C C. Review of the anatase to rutile phase transformation[J]. Journal of Materials Science, 2011, 46(4): 855-874.
[22] LIU X, LI Y, DENG D, et al.A one-step nonaqueous sol-gel route to mixed-phase TiO2 with enhanced photocatalytic degradation of Rhodamine B under visible light[J]. Crystengcomm, 2016, 18(11): 1964-1975.
[23] SING K S W. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (recommendations 1984)[J]. Pure and Applied Chemistry, 1985, 57(4): 603-619.
[24] YU J, RAN J.Facile preparation and enhanced photocatalytic H2-production activity of Cu(OH)2 cluster modified TiO2[J]. Energy & Environmental Science, 2011, 4(4): 1364-1371.
[25] TSAI C C, TENG H.Regulation of the physical characteristics of titania nanotube aggregates synthesized from hydrothermal treatment[J]. Chemistry of Materials, 2004, 16(22): 4352-4358.
[26] YU J, YU J C, LEUNG M K P, et al. Effects of acidic and basic hydrolysis catalysts on the photocatalytic activity and microstructures of bimodal mesoporous titania[J]. Journal of Catalysis, 2003, 217(1): 69-78.
[27] SAPUTERA W H, MUL G, HAMDY M S.Ti3+-containing titania: synthesis tactics and photocatalytic performance[J]. Catalysis Today, 2015, 246: 60-66.
[28] SOO C W, LAI C W, PAN G T, et al.Effects of various hydrogenated temperatures on photocatalytic activity of mesoporous titanium dioxide[J]. Micro & Nano Letters, 2018, 13(1): 77-82.
[29] PENG T Y, ZHAO D, DAI K, et al.Synthesis of titanium dioxide nanoparticles with mesoporous anatase wall and high photocatalytic activity[J]. Journal of Physical Chemistry B, 2005, 109(11): 4947-4952.
[30] XIN X, XU T, YIN J, et al. Management on the location and concentration of Ti3+ in anatase TiO2 for defects-induced visible-light photocatalysis[J]. Applied Catalysis B: Environmental, 2015, 176/177: 354-362.
[31] MA S, REISH M E, ZHANG Z, et al.Anatase-selective photoluminescence spectroscopy of P25 TiO2 nanoparticles: different effects of oxygen adsorption on the band bending of anatase[J]. The Journal of Physical Chemistry C, 2017, 121(2): 1263-1271.
[32] HAN E, VIJAYARANGAMUTHU K, YOUN J S, et al.Degussa P25 TiO2 modified with H2O2 under microwave treatment to enhance photocatalytic properties[J]. Catalysis Today, 2018, 303: 305-312.
[33] FINAZZI E, DI VALENTIN C, PACCHIONI G, et al.Excess electron states in reduced bulk anatase TiO2: comparison of standard GGA, GGA plus U, and hybrid DFT calculations[J]. Journal of Chemical Physics, 2008, 129(15): 154113.
[34] CHATTERJEE S, KAR A K.Oxygen-vacancy-dependent photocatalysis for the degradation of MB dye using UV light and observation of förster resonance energy transfer (FRET) in pani-capped ZnO[J]. The Journal of Physical Chemistry C, 2020, 124(33): 18284-18301.
[35] TIAN J, LENG Y, CUI H, et al.Hydrogenated TiO2 nanobelts as highly efficient photocatalytic organic dye degradation and hydrogen evolution photocatalyst[J]. Journal of Hazardous Materials, 2015, 299: 165-173.