首页   |   期刊介绍   |   编 委 会   |   投稿指南   |   出版法规   |   出版伦理   |   期刊订阅   |   联系我们   |   留言板   |   广告合作   |   ENGLISH
工艺技术

低压快速氢化引入氧空位增强TiO2光催化降解性能

  • 陈峰磊 ,
  • 杨万林 ,
  • 朱俊奎 ,
  • 魏秋平 ,
  • 张龙 ,
  • 李静 ,
  • 马莉
展开
  • 1.中南大学 粉末冶金国家重点实验室,长沙 410083;
    2.中南大学 材料科学与工程学院,长沙 410083;
    3.长沙理工大学 材料科学与工程学院,长沙 410114

收稿日期: 2023-03-31

  修回日期: 2023-06-13

  网络出版日期: 2024-01-23

基金资助

国家“十四五”重点研究发展计划(2021YFB3701800); 国家自然科学基金资助项目(52202056,52274370,52071345,51874370); 广东省“十三五”重点研究开发项目(2020B01085001); 湖南省教育厅资助科研项目(20C0037); 湖南省高新技术产业科技创新引领计划(2022GK4037,2022GK4047); 粉末冶金国家重点实验室自主课题(621022230)

Low pressure rapid hydrogenation induced oxygen vacancy to enhance the photocatalytic degradation performance of TiO2

  • CHEN Fenglei ,
  • YANG Wanlin ,
  • ZHU Junkui ,
  • WEI Qiuping ,
  • ZHANG Long ,
  • LI Jing ,
  • MA Li
Expand
  • 1. State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China;
    2. School of Materials Science and Engineering, Central South University, Changsha 410083, China;
    3. School of Materials Science and Engineering, Changsha University of Science and Technology, Changsha 410114, China

Received date: 2023-03-31

  Revised date: 2023-06-13

  Online published: 2024-01-23

摘要

利用管式炉在300、400和500 ℃对TiO2光催化剂(P25)进行低压快速氢化处理,研究氢化温度对样品物相结构、光电化学性能及催化降解活性的影响。结果表明:随氢化温度升高,P25氧空位浓度、光生载流子分离效率、可见光吸收性能、载流子浓度以及光催化活性均先增大后减小,400 ℃氢化处理1 h的P25具有最佳上述性能。P25的BET (Brunauer-Emmett-Teller)比表面积对氢化温度的变化不敏感,说明低压快速氢化可在避免比表面积损失的同时引入氧空位,抑制电子空穴对的复合,提高光吸收性能和载流子浓度,从而提升P25的光催化性能。400 ℃氢化处理1 h后,P25的反应速率常数是未处理P25的1.63倍。

本文引用格式

陈峰磊 , 杨万林 , 朱俊奎 , 魏秋平 , 张龙 , 李静 , 马莉 . 低压快速氢化引入氧空位增强TiO2光催化降解性能[J]. 粉末冶金材料科学与工程, 2023 , 28(6) : 545 -553 . DOI: 10.19976/j.cnki.43-1448/TF.2023037

Abstract

A tube furnace was used to perform low-pressure rapid hydrogenation treatment on TiO2 photocatalyst (P25) at 300, 400, and 500 ℃, and the effects of hydrogenation temperature on the phase structure, photoelectrochemical performance, and catalytic degradation activity of the sample were studied. The results show that the oxygen vacancy concentration, photogenerated carrier separation efficiency, visible light absorption performance, carrier concentration, and photocatalytic activity of P25 appear to first increase and then decrease as the hydrogenation temperature increases. P25 hydrogenated at 400 ℃ for 1 h has the best performance above. BET (Brunauer-Emmett-Teller) specific surface area of P25 is not sensitive to the change of hydrogenation temperature, indicating that low-pressure rapid hydrogenation can introduce oxygen vacancies while avoiding loss of specific surface area, inhibit the recombination of electron-hole pairs, improve light absorption performance and carrier concentration, thereby improving P25 photocatalytic performance. After hydrogenation treatment at 400 ℃ for 1 h, the reaction rate constant of P25 is 1.63 times than that of untreated P25.

参考文献

[1] WANG T, PAN X, BEN W, et al.Adsorptive removal of antibiotics from water using magnetic ion exchange resin[J]. Journal of Environmental Sciences, 2017, 52: 111-117.
[2] ZHENG Y, LIN L H, WANG B, et al.Graphitic carbon nitride polymers toward sustainable photoredox catalysis[J]. Angewandte Chemie-International Edition, 2015, 54(44): 12868-12884.
[3] BAI S, JIANG J, ZHANG Q, et al.Steering charge kinetics in photocatalysis: intersection of materials syntheses, characterization techniques and theoretical simulations[J]. Chemical Society Reviews, 2015, 44(10): 2893-2939.
[4] LIU B, CHENG K, NIE S, et al.Ice-water quenching induced Ti3+ self-doped TiO2 with surface lattice distortion and the increased photocatalytic activity[J]. The Journal of Physical Chemistry C, 2017, 121(36): 19836-19848.
[5] WANG W, LU C H, NI Y R, et al.Enhanced visible-light photoactivity of {001} facets dominated TiO2 nanosheets with even distributed bulk oxygen vacancy and Ti3+[J]. Catalysis Communications, 2012, 22: 19-23.
[6] 刘保顺, 何鑫, 赵修建, 等. 热处理对TiO2溅射薄膜结构和光谱性能的影响[J]. 稀有金属材料与工程, 2005(9): 1451-1454.
LIU Baoshun, HE Xin, ZHAO Xiujian, et al.The effect of the d-electron transition on UV-Vis spectra and PL spectra of TiO2 films[J]. Rare Materials and Engineering, 2005(9): 1451-1454.
[7] 官仁发, 肖亚, 刘启明, 等. Cu/Ag掺杂TiO2包覆SiO2纳米复合材料的结构与光催化性能[J]. 粉末冶金材料科学与工程, 2018, 23(1): 101-109.
GUAN Renfa, XIAO Ya, LIU Qiming, et al.Synthesis and photocatalytic property of SiO2 nanopowder coated by Cu/Ag-doped TiO2[J]. Materials Science and Engineering of Powder Metallurgy, 2018, 23(1): 101-109.
[8] LI D, HANEDA H, LABHSETWAR N K, et al.Visible-light-driven photocatalysis on fluorine-doped TiO2 powders by the creation of surface oxygen vacancies[J]. Chemical Physics Letters, 2005, 401(4/6): 579-584.
[9] ZUO F, WANG L, WU T, et al.Self-doped Ti3+ enhanced photocatalyst for hydrogen production under visible light[J]. Journal of the American Chemical Society, 2010, 132(34): 11856-11857.
[10] LIU H, MA H T, LI X Z, et al.The enhancement of TiO2 photocatalytic activity by hydrogen thermal treatment[J]. Chemosphere, 2003, 50(1): 39-46.
[11] PERIYAT P, BAIJU K V, MUKUNDAN P, et al.Aqueous colloidal sol-gel route to synthesize nanosized ceria-doped titania having high surface area and increased anatase phase stability[J]. Journal of Sol-Gel Science and Technology, 2007, 43(3): 299-304.
[12] CHEN X, LIU L, YU P Y, et al.Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals[J]. Science, 2011, 331(6018): 746-750.
[13] ZHU Y, LIU D, MENG M.H2 spillover enhanced hydrogenation capability of TiO2 used for photocatalytic splitting of water: a traditional phenomenon for new applications[J]. Chemical Communications, 2014, 50(45): 6049-6051.
[14] LESHUK T, PARVIZ R, EVERETT P, et al.Photocatalytic activity of hydrogenated TiO2[J]. ACS Applied Materials & Interfaces, 2013, 5(6): 1892-1895.
[15] MYUNG S T, KIKUCHI M, YOON C S, et al.Black anatase titania enabling ultra high cycling rates for rechargeable lithium batteries[J]. Energy & Environmental Science, 2013, 6(9): 2609-2614.
[16] KUTTY T R N, VIVEKANANDAN R, MURUGARAJ P. Precipitation of rutile and anatase (TiO2) fine powders and their conversion to MTiO3 (M=Ba, Sr, Ca) by the hydrothermal method[J]. Materials Chemistry and Physics, 1988, 19(6): 533-546.
[17] MARIANA H R, ROBERTO C S, RUIZ F, et al.H2Ti3O7 nanotubes decorated with silver nanoparticles for photocatalytic degradation of atenolol[J]. Journal of Nanomaterials, 2017, 2017: 9610419.
[18] LEBEDEV V A, KOZLOV D A, KOLESNIK I V, et al.The amorphous phase in titania and its influence on photocatalytic properties[J]. Applied Catalysis B: Environmental, 2016, 195: 39-47.
[19] MEKASUWANDUMRONG O, CHAITAWORN S, PANPRANOT J, et al.Photocatalytic liquid-phase selective hydrogenation of 3-nitrostyrene to 3-vinylaniline of various treated-TiO2 without use of reducing gas[J]. Catalysts, 2019, 9(4): 329.
[20] QIN X, JING L, TIAN G, et al.Enhanced photocatalytic activity for degrading Rhodamine B solution of commercial Degussa P25 TiO2 and its mechanisms[J]. Journal of Hazardous Materials, 2009, 172(2): 1168-1174.
[21] HANAOR D A H, SORRELL C C. Review of the anatase to rutile phase transformation[J]. Journal of Materials Science, 2011, 46(4): 855-874.
[22] LIU X, LI Y, DENG D, et al.A one-step nonaqueous sol-gel route to mixed-phase TiO2 with enhanced photocatalytic degradation of Rhodamine B under visible light[J]. Crystengcomm, 2016, 18(11): 1964-1975.
[23] SING K S W. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (recommendations 1984)[J]. Pure and Applied Chemistry, 1985, 57(4): 603-619.
[24] YU J, RAN J.Facile preparation and enhanced photocatalytic H2-production activity of Cu(OH)2 cluster modified TiO2[J]. Energy & Environmental Science, 2011, 4(4): 1364-1371.
[25] TSAI C C, TENG H.Regulation of the physical characteristics of titania nanotube aggregates synthesized from hydrothermal treatment[J]. Chemistry of Materials, 2004, 16(22): 4352-4358.
[26] YU J, YU J C, LEUNG M K P, et al. Effects of acidic and basic hydrolysis catalysts on the photocatalytic activity and microstructures of bimodal mesoporous titania[J]. Journal of Catalysis, 2003, 217(1): 69-78.
[27] SAPUTERA W H, MUL G, HAMDY M S.Ti3+-containing titania: synthesis tactics and photocatalytic performance[J]. Catalysis Today, 2015, 246: 60-66.
[28] SOO C W, LAI C W, PAN G T, et al.Effects of various hydrogenated temperatures on photocatalytic activity of mesoporous titanium dioxide[J]. Micro & Nano Letters, 2018, 13(1): 77-82.
[29] PENG T Y, ZHAO D, DAI K, et al.Synthesis of titanium dioxide nanoparticles with mesoporous anatase wall and high photocatalytic activity[J]. Journal of Physical Chemistry B, 2005, 109(11): 4947-4952.
[30] XIN X, XU T, YIN J, et al. Management on the location and concentration of Ti3+ in anatase TiO2 for defects-induced visible-light photocatalysis[J]. Applied Catalysis B: Environmental, 2015, 176/177: 354-362.
[31] MA S, REISH M E, ZHANG Z, et al.Anatase-selective photoluminescence spectroscopy of P25 TiO2 nanoparticles: different effects of oxygen adsorption on the band bending of anatase[J]. The Journal of Physical Chemistry C, 2017, 121(2): 1263-1271.
[32] HAN E, VIJAYARANGAMUTHU K, YOUN J S, et al.Degussa P25 TiO2 modified with H2O2 under microwave treatment to enhance photocatalytic properties[J]. Catalysis Today, 2018, 303: 305-312.
[33] FINAZZI E, DI VALENTIN C, PACCHIONI G, et al.Excess electron states in reduced bulk anatase TiO2: comparison of standard GGA, GGA plus U, and hybrid DFT calculations[J]. Journal of Chemical Physics, 2008, 129(15): 154113.
[34] CHATTERJEE S, KAR A K.Oxygen-vacancy-dependent photocatalysis for the degradation of MB dye using UV light and observation of förster resonance energy transfer (FRET) in pani-capped ZnO[J]. The Journal of Physical Chemistry C, 2020, 124(33): 18284-18301.
[35] TIAN J, LENG Y, CUI H, et al.Hydrogenated TiO2 nanobelts as highly efficient photocatalytic organic dye degradation and hydrogen evolution photocatalyst[J]. Journal of Hazardous Materials, 2015, 299: 165-173.
文章导航

/

版权所有 © 《粉末冶金材料科学与工程》编辑部
地址:长沙市麓山南路中南大学粉末冶金研究院 邮编:410083 电话:0731-88877163 邮箱:pmbjb@csu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn