首页   |   期刊介绍   |   编 委 会   |   投稿指南   |   出版法规   |   出版伦理   |   期刊订阅   |   联系我们   |   留言板   |   广告合作   |   ENGLISH
工艺技术

闪烧致密Al2O3-ZrO2复相陶瓷的微观结构及力学性能

  • 姚曙 ,
  • 刘佃光 ,
  • 赵科 ,
  • 刘金铃
展开
  • 1.西南交通大学 材料科学与工程学院,成都 610031;
    2.西南交通大学 力学与航空航天学院,成都 610031

收稿日期: 2023-07-25

  修回日期: 2023-09-07

  网络出版日期: 2023-11-22

基金资助

国家自然科学基金面上项目(52272074); 四川省科技计划杰青培育项目(2021JDJQ0019); 凝固技术国家重点实验室开放课题(SKLSP202104); 中央高校基本科研业务费专项资金(2682022ZTPY076); 河南省航空材料与应用技术重点实验室开放基金(ZHKF-230102,ZHKF-230114); 广东省基础与应用基础研究基金(2019A1515110967)

Microstructure and mechanical properties of dense Al2O3-ZrO2 composite ceramic via flash sintering treatment

  • YAO Shu ,
  • LIU Dianguang ,
  • ZHAO Ke ,
  • LIU Jinling
Expand
  • 1. School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China;
    2. School of Mechanics and Aerospace Engineering, Southwest Jiaotong University, Chengdu 610031, China

Received date: 2023-07-25

  Revised date: 2023-09-07

  Online published: 2023-11-22

摘要

以α-Al2O3和氧化钇稳定氧化锆粉体为原料,无压烧结制备致密Al2O3-ZrO2复相陶瓷,在临界电场下进行热处理后,对Al2O3-ZrO2复相陶瓷的微观结构和力学性能进行研究。结果表明:在900 V/cm的电场下,烧结致密Al2O3-ZrO2复相陶瓷的闪烧起始炉温为308 ℃。在炉温为1 200 ℃、电场为700 V/cm的条件下,闪烧致密Al2O3-ZrO2复相陶瓷原位合成Al2O3-ZrO2共晶结构。闪烧陶瓷主要分为复相区、过渡区和共晶区3个区域。复相区的微观结构与烧结陶瓷相似,形状不规则的Al2O3和ZrO2相均匀分布;过渡区晶粒异常长大,粗大的Al2O3和ZrO2相均匀分布;共晶区则呈现典型的Al2O3-ZrO2共晶结构。共晶区的维氏硬度和韧性分别为17.94 GPa和3.51 MPa·m1/2,与采用定向凝固技术制备的Al2O3-ZrO2共晶陶瓷的力学性能相当。

本文引用格式

姚曙 , 刘佃光 , 赵科 , 刘金铃 . 闪烧致密Al2O3-ZrO2复相陶瓷的微观结构及力学性能[J]. 粉末冶金材料科学与工程, 2023 , 28(5) : 500 -508 . DOI: 10.19976/j.cnki.43-1448/TF.2023065

Abstract

Dense Al2O3-ZrO2 composite ceramics were prepared by pressureless sintering using α-Al2O3 and yttria stabilized zirconia powders as raw materials, conducting heat treatment under critical electric field, and the microstructure and mechanical properties of the composite ceramics were investigated. Results indicate that the onset temperature of flash sintering for sintered dense Al2O3-ZrO2 composite ceramic is 308 ℃ under an electric field of 900 V/cm. Al2O3-ZrO2 eutectic zone is in-situ synthesized in the dense Al2O3-ZrO2 composite ceramic using flash sintering at 1 200 ℃ and 700 V/cm. The flash sintered ceramic is divided into three zones: composite zone, transition zone, and eutectic zone. In the composite zone, the Al2O3 and ZrO2 phases are irregular shapes and uniformly distributed, where there is similar microstructure to the sintered ceramic. In the transition zone, the abnormal grain growth is observed, and the coarse Al2O3 and ZrO2 phases are evenly distributed. In the eutectic zone, it possesses the typical microstructure of Al2O3-ZrO2 eutectic ceramic. The Vickers hardness and toughness of eutectic zone are 17.94 GPa and 3.51 MPa·m1/2, respectively, which are comparable to those of Al2O3-ZrO2 eutectic ceramic fabricated by directional solidification technique.

参考文献

[1] COLOGNA M, RASHKOVA B, RAJ R.Flash sintering of nanograin zirconia in <5 s at 850 ℃[J]. Journal of the American Ceramic Society, 2010, 93(11): 3556-3559.
[2] TODD R I, ZAPATA-SOLVAS E, BONILLA R S, et al.Electrical characteristics of flash sintering: thermal runaway of joule heating[J]. Journal of the European Ceramic Society, 2015, 35(6): 1865-1877.
[3] COLOGNA M, FRANCIS J S C, RAJ R. Field assisted and flash sintering of alumina and its relationship to conductivity and MgO-doping[J]. Journal of the European Ceramic Society, 2011, 31(15): 2827-2837.
[4] LIU G X, LIU D G, LIU J L, et al.Asymmetric temperature distribution during steady stage of flash sintering dense zirconia[J]. Journal of the European Ceramic Society, 2018, 38(7): 2893-2896.
[5] LIU D G, PENG X Y, LIU J L, et al.Ultrafast synthesis of entropy-stabilized oxide at room temperature[J]. Journal of the European Ceramic Society, 2020, 40(6): 2504-2508.
[6] WANG K W, MA B S, LI T, et al.Fabrication of high-entropy perovskite oxide by reactive flash sintering[J]. Ceramics International, 2020, 46(11): 18358-18361.
[7] LI W G, CHEN L Y, LIU D G, et al.Ultra-low temperature reactive flash sintering synthesis of high-enthalpy and high-entropy Ca0.2Co0.2Ni0.2Cu0.2Zn0.2O oxide ceramics[J]. Materials Letters, 2021, 304: 130679.
[8] NAIK K S, SGLAVO V M, RAJ R.Field assisted sintering of ceramic constituted by alumina and yttria stabilized zirconia[J]. Journal of the European Ceramic Society, 2014, 34(10): 2435-2442.
[9] YOSHIDA H, SAKKA Y, YAMAMOTO T, et al.Densification behaviour and microstructural development in undoped yttria prepared by flash-sintering[J]. Journal of the European Ceramic Society, 2014, 34(4): 991-1000.
[10] LIU D G, GAO Y, LIU J L, et al.SiC whisker reinforced ZrO2 composites prepared by flash-sintering[J]. Journal of the European Ceramic Society, 2016, 36(8): 2051-2055.
[11] ZHANG H, WANG Y G, LIU J L, et al.Reaction assisted flash sintering of Al2O3-YAG ceramic composites with eutectic composition[J]. Ceramics International, 2019, 45(10): 13551-13555.
[12] YANG S L, YANG S R, ZHU Y X, et al.Flash sintering of dense alumina ceramic discs with high hardness[J]. Journal of the European Ceramic Society, 2022, 42(1): 202-206.
[13] XIA J B, REN K, WANG Y G, et al.Reversible flash-bonding of zirconia and nickel alloys[J]. Scripta Materialia, 2018, 153: 31-34.
[14] BIESUZ M, SAUNDERS T G, GRASSO S, et al.Flash joining of conductive ceramics in a few seconds by flash spark plasma sintering[J]. Journal of the European Ceramic Society, 2019, 39(15): 4664-4672.
[15] XIA J B, REN K, WANG Y G.Rapid joining of heterogeneous ceramics with a composite interlayer under the action of an electric field[J]. Journal of the European Ceramic Society, 2021, 41(14): 7164-7169.
[16] LIU D G, WANG K W, ZHAO K, et al.Creep behavior of zirconia ceramics under a strong DC field[J]. Scripta Materialia, 2022, 214: 114654.
[17] LIU D G, GAO Y, LIU J L, et al.Preparation of Al2O3-Y3Al5O12-ZrO2 eutectic ceramic by flash sintering[J]. Scripta Materialia, 2016, 114: 108-111.
[18] LIU J L, XU X, LIU D G, et al.Ultrafast formation of Al2O3-Y3Al5O12 eutectic ceramic by flash sintering[J]. Journal of the American Ceramic Society, 2020, 103(8): 4051-4056.
[19] YAO S, LIU D G, LIU J L, et al.Ultrafast preparation of Al2O3-ZrO2 multiphase ceramics with eutectic morphology via flash sintering[J]. Ceramics International, 2021, 47(22): 31555-31560.
[20] YANG Y J, MUMM D R, MECARTNEY M L.Flash sintering produces eutectic microstructures in Al2O3-LaPO4 versus conventional microstructures in 8YSZ-LaPO4[J]. Journal of the American Ceramic Society, 2021, 104(8): 3895-3909.
[21] SUN F, JI P C, TAN L, et al.Formation of eutectic microstructure in Al2O3-GdAlO3-ZrO2 ceramics by flash sintering[J]. Ceramics International, 2022, 48(11): 16455-16460.
[22] AOKI Y, MASUDA H, YOSHIDA H.Formation of Al2O3-GdAlO3 eutectic ceramics with a fine anisotropic structure in a flash event[J]. Journal of the American Ceramic Society, 2023, 106(6): 3336-3342.
[23] XU X, FAN J Y, LIU J L, et al.Formation of eutectic structure in dense Al2O3-YAG composite by electric field treatment[J]. Ceramics International, 2021, 47(16): 23647-23652.
[24] REN K, LIU J L, WANG Y G.Flash sintering of yttria-stabilized zirconia: fundamental understanding and applications[J]. Scripta Materialia, 2020, 187: 371-378.
[25] FAN J Y, YUAN Y, LI J S, et al.Densification and grain growth in oscillatory pressure sintering of alumina toughened zirconia ceramic composites[J]. Journal of Alloys and Compounds, 2020, 845: 155644.
[26] LAKIZA S M, LOPATO L M.Stable and metastable phase relations in the system alumina-zirconia-yttria[J]. Journal of the American Ceramic Society, 1997, 80(4): 893-902.
[27] VOORHEES P W.The theory of Ostwald ripening[J]. Journal of Statistical Physics, 1985, 38(1): 231-252.
[28] WANG Z G, OUYANG J H, MA Y H, et al.Insights into microstructural formation of pulse plasma semisolid to liquid processing of Al2O3-ZrO2 eutectic ceramics[J]. Journal of the American Ceramic Society, 2018, 101(9): 3773-3779.
[29] DE FRANCISCO I, MERINO R I, ORERA V M, et al.Growth of Al2O3/ZrO2(Y2O3) eutectic rods by the laser floating zone technique: effect of the rotation[J]. Journal of the European Ceramic Society, 2005, 25(8): 1341-1350.
[30] RAMIREZ-RICO J, MARTINEZ-FERNANDEZ J, PENA J I, et al.Residual stresses in Al2O3-ZrO2 (3mol.% Y2O3) directionally solidified eutectic ceramics as a function of temperature[J]. Materials Science and Engineering A, 2012, 541: 61-66.
[31] STEIL M C, MARINHA D, AMAN Y, et al.From conventional ac flash-sintering of YSZ to hyper-flash and double flash[J]. Journal of the European Ceramic Society, 2013, 33(11): 2093-2101.
[32] M′PEKO J C, FRANCIS J S C, RAJ R. Field-assisted sintering of undoped BaTiO3: microstructure evolution and dielectric permittivity[J]. Journal of the European Ceramic Society, 2014, 34(15): 3655-3660.
[33] BIESUZ M, SGLAVO V M.Flash sintering of ceramics[J]. Journal of the European Ceramic Society, 2019, 39(2/3): 115-143.
[34] NIU F Y, WU D J, MA G Y, et al.Nanosize microstructure of Al2O3-ZrO2 (Y2O3) eutectics fabricated by laser engineered net shaping[J]. Scripta Materialia, 2015, 95: 39-41.
[35] FU L S, WANG Z, FU X S, et al.Microstructure and mechanical properties of Y2O3-doped melt-grown Al2O3-ZrO2 eutectic ceramic[J]. Materials Science and Engineering A, 2017, 703: 372-379.
[36] FAN G R, SU H J, ZHANG J, et al.Microstructure and cytotoxicity of Al2O3-ZrO2 eutectic bioceramics with high mechanical properties prepared by laser floating zone melting[J]. Ceramics International, 2018, 44(15): 17978-17985.
[37] 杨紫微, 陈超, 吴谊友, 等. 选区激光熔化成形Al-Ce-Sc-Zr 合金的工艺优化与组织性能[J]. 粉末冶金材料科学与工程, 2023, 28(2): 170-179.
YANG Ziwei, CHEN Chao, WU Yiyou, et al.Process optimization, microstructure and mechanical properties of Al-Ce-Sc-Zr alloy by selective laser melting[J]. Materials Science and Engineering of Powder Metallurgy, 2023, 28(2): 170-179.
[38] RAJ R.Joule heating during flash-sintering[J]. Journal of the European Ceramic Society, 2012, 32(10): 2293-2301.
[39] PENA J I, MERINO R I, HARLAN N R, et al.Microstructure of Y2O3 doped Al2O3-ZrO2 eutectics grown by the laser floating zone method[J]. Journal of the European Ceramic Society, 2002, 22(14/15): 2595-2602.
[40] LIU D G, CAO Y J, LIU J L, et al.Effect of oxygen partial pressure on temperature for onset of flash sintering 3YSZ[J]. Journal of the European Ceramic Society, 2018, 38(2): 817-820.
[41] 刘金铃, 刘佃光, 任科, 等. 氧化物陶瓷闪烧机理及其应用研究进展[J]. 无机材料学报, 2022, 37: 473-480.
LIU Jinling, LIU Dianguang, REN Ke, et al.Research progress on the flash sintering mechanism of oxide ceramics and its application[J]. Journal of Inorganic Materials, 2022, 37: 473-480.
[42] LU S C, LIU J L, SHAO G, et al.On the electric conduction of ZrO2 in the steady stage of flash sintering[J]. Ceramics International, 2020, 46(5): 5715-5718.
[43] YOSHIDA H, MORITA K, KIM B N, et al.Reduction in sintering temperature for flash-sintering of yttria by nickel cation-doping[J]. Acta Materialia, 2016, 106: 344-352.
[44] OJAIMI C L, FERREIRA J A, CHINELATTO A L, et al.Microstructural analysis of ZrO2/Al2O3 composite: flash and conventional sintering[J]. Ceramics International, 2020, 46(2): 2473-2480.
文章导航

/

版权所有 © 《粉末冶金材料科学与工程》编辑部
地址:长沙市麓山南路中南大学粉末冶金研究院 邮编:410083 电话:0731-88877163 邮箱:pmbjb@csu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn