首页   |   期刊介绍   |   编 委 会   |   投稿指南   |   出版法规   |   出版伦理   |   期刊订阅   |   联系我们   |   留言板   |   广告合作   |   ENGLISH
工艺技术

Nb相增塑核壳结构TiAl/Nb复合材料的制备及组织性能研究

  • 申景园 ,
  • 胡连喜 ,
  • 王皓洋
展开
  • 哈尔滨工业大学 金属精密热加工国家级重点实验室,哈尔滨 150001

收稿日期: 2023-05-18

  修回日期: 2023-08-17

  网络出版日期: 2023-11-22

基金资助

国家自然科学基金资助项目(52175295)

Preparation, microstructure and properties of Nb phase plasticized TiAl/Nb composites with core-shell structure

  • SHEN Jingyuan ,
  • HU Lianxi ,
  • WANG Haoyang
Expand
  • National Key Laboratory for Precision Hot Processing of Metals, Harbin Institute of Technology, Harbin 150001, China

Received date: 2023-05-18

  Revised date: 2023-08-17

  Online published: 2023-11-22

摘要

针对传统 γ-TiAl合金室温塑性低、难以满足工程化应用的难题,本文提出Nb相增塑核壳结构TiAl/Nb复合材料,系统研究了复合材料的制备工艺和力学性能。结果表明:在200 r/min转速下球磨120 h可实现细小Nb颗粒对大尺寸 γ-TiAl雾化粉的完全包裹,随后在40 MPa下,1 200 ℃真空热压1 h可获得增塑相可控的致密核壳结构组织。制备的TiAl/Nb复合材料在室温下的屈服强度为971.5 MPa,抗压强度为2 337.7 MPa,断裂应变为31.7%,表现出高强度和良好的塑性。这种强度和塑性的协同提高归因于延性β-Nb相促进了基体相之间的协调变形,提高了材料的整体持续变形能力。

本文引用格式

申景园 , 胡连喜 , 王皓洋 . Nb相增塑核壳结构TiAl/Nb复合材料的制备及组织性能研究[J]. 粉末冶金材料科学与工程, 2023 , 28(5) : 481 -489 . DOI: 10.19976/j.cnki.43-1448/TF.2023054

Abstract

In response to the challenges of the low plasticity at room temperature and difficulty in meeting engineering applications in traditional γ-TiAl alloys, this paper proposed Nb phase plasticized TiAl/Nb composites with core-shell structure, and systematically studied the preparation technology and mechanical properities of the composites. The results show that complete encapsulation of large-sized γ-TiAl atomized powder by fine Nb particle can be achieved after 120 h ball milling at the speed of 200 r/min. Subsequently, a densified core-shell structure with controllable plasticized phase can be obtained after vacuum hot pressing at 1 200 ℃/1 h, under 40 MPa. The prepared TiAl/Nb composites exhibit high strength and good plasticity with the yield strength of 971.5 MPa, compressive strength of 2 337.7 MPa, and fracture strain of 31.7% at room temperature. The high strength and excellent plasticity of the composites are attributed to the ductile β-Nb phase which facilitates coordinated deformation between matrix phase colonies, which thereby enhancing the continuous deformation capacity of the integral bulk materials.

参考文献

[1] DIMIDUK D M.Gamma titanium aluminide alloys—an assessment within the competition of aerospace structural materials[J]. Materials Science and Engineering A, 1999, 263(2): 281-288.
[2] KIM Y W.Intermetallic alloys based on gamma titanium aluminide[J]. Journal of Metals, 1989, 41(7): 24-30.
[3] BEWLAY B P, NAG S, SUZUKI A, et al.TiAl alloys in commercial aircraft engines[J]. Materials at High Temperatures, 2016, 33(4/5): 549-559.
[4] GENC O, UNAL R.Development of gamma titanium aluminide (γ-TiAl) alloys: a review[J]. Journal of Alloys and Compounds, 2022, 929: 167262.
[5] HUANG D N, TAN Q Y, ZHOU Y H, et al.The significant impact of grain refiner on γ-TiAl intermetallic fabricated by laser-based additive manufacturing[J]. Additive Manufacturing, 2021, 46: 102172.
[6] SOLIMAN H A, ELBESTAWI M.Titanium aluminides processing by additive manufacturing-a review[J]. The International Journal of Advanced Manufacturing Technology, 2022, 119: 5583-5614.
[7] YANG K, YANG Z J, DENG P, et al.Microstructure and mechanical properties of as-cast γ-TiAl alloys with different cooling rates[J]. Journal of Materials Engineering and Performance, 2019, 28: 2271-2280.
[8] YAO J Q, FAN S, LIU X W, et al.Pollution-free grain refinement of cast TiAl alloys by vacuum mechanical vibration solidification[J]. Materials Science and Engineering A, 2023, 865: 144630.
[9] CHENG F, WANG H M, WU Y, et al.Microstructure evolution and tensile property of TiAl alloy using continuous direct energy deposition technique[J]. Journal of Alloys and Compounds, 2022, 906: 164309.
[10] JIN Z H, JIA L N, YE C T, et al.Orientation dependence of microcosmic plasticity and toughness in Nb-Si alloys[J]. Journal of Alloys and Compounds, 2023, 934: 167549.
[11] SHEN J Y, HU L X, ZHANG L X, et al.Synthesis of TiAl/Nb composites with concurrently enhanced strength and plasticity by powder metallurgy[J]. Materials Science and Engineering A, 2020, 795: 139997.
[12] CHLUPOVA A, HECZKO M, OBRTLIK K, et al.Mechanical properties of high niobium TiAl alloys doped with Mo and C[J]. Materials & Design, 2016, 99: 284-292.
[13] PYO S G, CHANG Y W, KIM N J.Microstructure and mechanical properties of duplex TiAl alloys containing Mn[J]. Metals and Materials, 1995, 1(2): 107-115.
[14] LIU T, LUO L S, ZHANG D H, et al.Comparison of microstructures and mechanical properties of as-cast and directionally solidified Ti-47Al-1W-0.5Si alloy[J]. Journal of Alloys and Compounds, 2016, 682: 663-671.
[15] LI W, LI M, YANG Y, et al.Enhanced compressive strength and tailored microstructure of selective laser melted Ti-46.5Al-2.5Cr-2Nb-0.5Y alloy with different boron addition[J]. Materials Science and Engineering A, 2018, 731: 209-219.
[16] KARTAVYKH A V, ASNIS E A, PISKUN N V, et al.Microstructure and mechanical properties control of γ-TiAl(Nb,Cr,Zr) intermetallic alloy by induction float zone processing[J]. Journal of Alloys and Compounds, 2015, 643: S182-S186.
[17] WANG Q, DING H, ZHANG H, et al.Influence of Mn addition on the microstructure and mechanical properties of a directionally solidified γ-TiAl alloy[J]. Materials Characterization, 2018, 137: 133-141.
[18] WANG Q, DING H, ZHANG H, et al.Microstructure and compressive properties of directionally solidified Er-bearing TiAl alloy using cold crucible[J]. Materials & Design, 2016, 99: 10-20.
[19] CHEN R R, ZHENG D S, MA T F, et al.Effects and mechanism of ultrasonic irradiation on solidification microstructure and mechanical properties of binary TiAl alloys[J]. Ultrasonics Sonochemistry, 2017, 38: 120-133.
[20] CHEN R R, ZHENG D S, MA T F, et al.Effects of ultrasonic vibration on the microstructure and mechanical properties of high alloying TiAl[J]. Scientific Reports, 2017, 7(1): 1-15.
[21] ZHENG D S, CHEN R R, MA T F, et al.Microstructure modification and mechanical performances enhancement of Ti44Al6Nb1Cr alloy by ultrasound treatment[J]. Journal of Alloys and Compounds, 2017, 710: 409-417.
[22] BOHN R, KLASSEN T, BORMANN R.Room temperature mechanical behavior of silicon-doped TiAl alloys with grain sizes in the nano-and submicron-range[J]. Acta Materialia, 2001, 49(2): 299-311.
[23] GU X, CAO F, LIU N, et al.Microstructural evolution and mechanical properties of a high yttrium containing TiAl based alloy densified by spark plasma sintering[J]. Journal of Alloys and Compounds, 2020, 819: 153264.
文章导航

/

版权所有 © 《粉末冶金材料科学与工程》编辑部
地址:长沙市麓山南路中南大学粉末冶金研究院 邮编:410083 电话:0731-88877163 邮箱:pmbjb@csu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn