采用扫描电镜、X射线衍射、透射电镜和硬度测试等方法,研究热暴露对不同时效态2A97铝锂合金微观组织与性能的影响。结果表明:T6和T8态合金经热暴露后物相的种类及形貌变化规律相似,随热暴露温度升高,合金中的θʹ相(Al2Cu)粗化且数量减少,T1相(Al2CuLi)向平衡相转变,合金热稳定性变差。与T8态不同的是,T6态合金中的强化相除T1相和θʹ相外,还有立方相,但该相的强化效果远低于T1相和θʹ相。立方相经200 ℃热暴露后,数量增多,经300 ℃热暴露后,回溶进入基体。故在低温热暴露后T6态合金的热稳定性优于T8态,但在高温热暴露后两种时效态合金的热稳定性基本相当。T8态合金的硬度显著高于T6态,经低温热暴露后,T8态合金的硬度下降幅度大于T6态,但两种合金高温热暴露后的硬度下降幅度基本一致。
The effects of thermal exposure on microstructure and properties of 2A97 Al-Li alloy in different aging states were studied by means of scanning electron microscope, X-ray diffraction, transmission electron microscope, and hardness test. The results show that the phase types and morphologies of T6 and T8 alloys are similar after thermal exposure. With the increase of thermal exposure temperature, θʹ phase (Al2Cu) coarsens and decreases in quantity, T1 phase (Al2CuLi) changes to equilibrium phase, and the thermal stability of the alloy deteriorates. Different from T8 alloy, the strengthening phase in T6 alloy is not only T1 and θʹ phases, but also cubic phase, but the strengthening effect of this phase is much lower than that of T1 and θʹ phases. After exposure at 200 ℃, the quantity of cubic phase increases, and after exposure at 300 ℃, it redissolves into the matrix. Therefore, the thermal stability of T6 alloy after low temperature thermal exposure is better than that of T8 alloy, but the thermal stability of the two aging state alloys after high temperature thermal exposure is basically the same. The hardness of T8 alloy is significantly higher than that of T6 alloy, and the hardness decrease of T8 alloy is greater than that of T6 after low temperature thermal exposure. However, the hardness decrease of the two alloys after high temperature thermal exposure is basically the same.
[1] EL-ATY A A, XU Y, GUO X Z, et al. Strengthening mechanisms, deformation behavior and anisotropic mechanical properties of Al-Li alloys: a review[J]. Journal of Advanced Research, 2017, 10: 49-67.
[2] 冯朝辉, 于娟, 郝敏, 等. 铝锂合金研究进展及发展趋势[J]. 航空材料学报, 2020, 40(1): 1-11.
FENG Zhaohui, YU Juan, HAO Min, et al.Research progress and development trend of Al-Li Alloy[J]. Journal of Aeronautical Materials, 2020, 40(1): 1-11.
[3] RIOJA R J, LIU J.The evolution of Al-Li base products for aerospace and space applications[J]. Matallurgical and Materials Transactions, 2012, 43A(9): 3325-3337.
[4] WU M D, LIU W S, XIAO D H, et al.Influence of thermal exposure on the microstructure evolution and mechanical behaviors of an Al-Cu-Li alloy[J]. Materials & Design, 2023, 227: 1-20.
[5] BALDUCCI E, CESCHINI L, MESSIERI S, et al.Thermal stability of the lightweight 2099 Al-Cu-Li alloy: tensile tests and microstructural investigations after overageing[J]. Materials & Design, 2017, 119: 54-64.
[6] BALDUCCI E, CESCHINI L, MESSIERI S, et al.Effects of overageing on microstructure and tensile properties of the 2055 Al-Cu-Li-Ag alloy[J]. Materials Science and Engineering A, 2017, 707: 221-231.
[7] KATSIKIS S, NOBLE B, HARRIS S J.Microstructural stability during low temperature exposure of alloys within the Al-Li-Cu-Mg system[J]. Materials Science and Engineering A, 2008, 485(1/2): 613-620.
[8] DESCHAMPS A, GARCIA M, CHEVY J, et al.Influence of Mg and Li content on the microstructure evolution of Al-Cu-Li alloys during long-term ageing[J]. Acta Materialia, 2017, 122: 32-46.
[9] ORTIZ D, BROWN J, ABDELSHEHID M, et al.The effects of prolonged thermal exposure on the mechanical properties and fracture toughness of C458 aluminum-lithium alloy[J]. Engineering Failure Analysis, 2006, 13(1): 170-180.
[10] 朱宏斌, 韩艳彬, 王浩军, 等. 2A97铝锂合金薄板热处理变形控制及其力学性能研究[J].军民两用技术与产品, 2022(11): 48-53.
ZHU Hongbin, HAN Yanbin, WANG Haojun, et al.Deformation control and mechanical properties of 2A97 Al-Li alloy thin plate during heat treatment[J]. Dual-Use Technologies & Products, 2022(11): 48-53.
[11] 杨守杰, 卢健, 冯朝辉, 等. 铝锂合金历史回顾与在中国的研究发展[J]. 材料导报, 2014(S2): 430-435.
YANG Shoujie, LU Jian, FENG Zhaohui, et al.Historical review and research development of Al-Li alloy in China[J]. Materials Review, 2014(S2): 430-435.
[12] 黄兰萍. 2197铝锂合金组织和性能的研究[D]. 长沙: 中南大学, 2002: 30-34.
HUANG Lanping.Study on microstructure and properties of 2197 Al-Li alloy[D]. Changsha: Central South University, 2002: 30-34.
[13] 朱遥锴. 表面质量和高温热暴露对γ-TiAl合金疲劳性能的影响[D]. 成都: 西南交通大学, 2017: 23-35.
ZHU Yaokai.Effect of surface quality and high temperature thermal exposure on fatigue properties of γ-TiAl alloy[D]. Chengdu: Southwest Jiaotong University, 2017: 23-35.
[14] 李晓东. 热环境对复合材料金字塔点阵夹芯结构力学性能的影响[D]. 哈尔滨: 哈尔滨工业大学, 2018: 70-74.
LI Xiaodong.Influence of thermal environment on mechanical properties of pyramidal lattice sandwich structure of composite materials[D]. Harbin: Harbin Institute of Technology, 2018: 70-74.
[15] 刘昌奎, 周静怡, 魏振伟, 等. 高温热暴露时FGH97粉末高温合金中γ′相的演变及其定量表征[J]. 机械工程材料, 2018, 42(5): 9-13.
LIU Changkui, ZHOU Jingyi, WEI Zhenwei, et al.Evolution and quantitative characterization of γ′ phase in FGH97 powder superalloy under high temperature thermal exposure[J]. Mechanical Engineering Materials, 2018, 42(5): 9-13.
[16] JIANG B, WANG H S, YI D Q.Effect of Ag addition on the age hardening and precipitation behavior in an Al-Cu-Li-Mg-Zn-Mn-Zr alloy[J]. Materials Characterization, 2020, 162: 1-12.
[17] 刘君, 孙志超, 唐文亭. K403镍基铸造合金热暴露后的微观组织与性能[J]. 铸造, 2013, 62(7): 612-615.
LIU Jun,SUN Zhichao, TANG Wenting.Microstructure and properties of K403 nickel-base casting alloy after thermal exposure[J]. Casting, 2013, 62(7): 612-615.
[18] 王欣, 艾莹珺, 汤智慧, 等. 热暴露对表面预形变单晶合金组织和性能的影响[J]. 稀有金属材料与工程, 2019, 48(2): 573-579.
WANG Xin, AI Yingjun, TANG Zhihui, et al.Effect of thermal exposure on microstructure and properties of surface predeformed single crystal alloys[J]. Rare Metal Materials and Engineering, 2019, 48(2): 573-579.
[19] 郝时嘉, 陆政, 李国爱, 等. 高性能铝锂合金关键力学性能各向异性的影响因素及控制措施[J]. 材料导报, 2019, 33(S2): 389-393, 405.
HAO Shijia, LU Zheng, LI Guoai, et al.Influence factors and control measures on anisotropy of key mechanical properties of high performance Al-Li alloy[J]. Material Guide, 2019, 33(S2): 389-393, 405.
[20] 陆政, 强俊, 吴一雷, 等. 热暴露对铝锂8090合金挤压型材性能的影响[J]. 兵器材料科学与工程, 1996(4): 25-29.
LU Zheng, QIANG Jun, WU Yilei, et al. Influence of thermal exposure on the properties of aluminum lithium8090 alloy extruded profiles[J]. Ordnance Material Science and Engineering, 1996(4): 25-29.
[21] 虞朝智, 李国爱, 王亮, 等. 不同时效状态对 2A97 铝锂合金薄板疲劳损伤行为的影响[J]. 科学技术创新, 2022(18): 58-61.
YU Chaozhi, LI Guoai, WANG Liang, et al.Effect of different aging states on fatigue damage behavior of 2A97 aluminum lithium alloy thin plate[J]. Scientific and Technological Innovation, 2022(18): 58-61.
[22] 毛柏平, 闫晓东, 沈健. 2197铝锂合金形变热处理中T1相的析出行为[J]. 中国有色金属学报, 2015, 25(9): 2366-2371.
MAO Baiping, YAN Xiaodong, SHEN Jian.Precipitation behavior of T1 phase in 2197 Al-Li alloy during deformation heat treatment[J]. Chinese Journal of Nonferrous Metals, 2015, 25(9): 2366-2371.
[23] 魏齐龙, 陈铮, 王永欣. T1相(Al2CuLi)对铝锂合金各向异性的贡献[J]. 有色金属, 2002, 54(3): 4-8.
WEI Qilong, CHEN Zheng, WANG Yongxin.Contribution of T1 phase (Al2CuLi) to anisotropy of Al-Li alloy[J]. Nonferrous Metals, 2002, 54(3): 4-8.