首页   |   期刊介绍   |   编 委 会   |   投稿指南   |   出版法规   |   出版伦理   |   期刊订阅   |   联系我们   |   留言板   |   广告合作   |   ENGLISH
工艺技术

两步水热法制备纳米花状Ni3Fe/Ni3S2高效电催化剂促进碱性电解水析氧反应

  • 陈宇翔 ,
  • 何捍卫
展开
  • 中南大学 粉末冶金研究院,长沙 410083

收稿日期: 2023-03-31

  修回日期: 2023-06-19

  网络出版日期: 2023-11-22

Two-step hydrothermal preparing nanoflower-like Ni3Fe/Ni3S2 high-efficiency electrocatalysts to enhance oxygen evolution reaction in alkaline media

  • CHEN Yuxiang ,
  • HE Hanwei
Expand
  • Powder Metallurgy Research Institute, Central South University, Changsha 410083, China

Received date: 2023-03-31

  Revised date: 2023-06-19

  Online published: 2023-11-22

摘要

分别以Fe(NO3)3∙9H2O和Na2S∙9H2O作为Fe源和S源,用镍网(nickle mesh, NM)作为Ni源与支撑基底,采用两步水热法合成Ni3Fe/Ni3S2析氧催化剂,通过X射线衍射、X射线光电子能谱、扫描电镜和透射电镜分析催化剂的显微组织与形貌,用电化学工作站进行电化学性能测试。结果表明:两步水热法合成的Ni3Fe/Ni3S2催化剂为丰富立体的纳米花形貌,这种形貌可提升催化剂的空间利用率。Ni3S2暴露出高折射率的$\{\bar{2}10\}$晶面,与Ni3Fe的(111)晶面产生协同效应,从而提升了催化活性。在1 mol/L的KOH溶液(25 ℃)中,10 mA/cm2电流密度下Ni3Fe/Ni3S2/NM的析氧过电位为229 mV,在5.35 mol/L的KOH溶液(80 ℃)中,600 mA/cm2电流密度下的过电位为335 mV,且经6 000圈循环伏安法循环后,过电位衰减率仅为2.39%,说明该催化剂具有良好的析氧性能和稳定性。

本文引用格式

陈宇翔 , 何捍卫 . 两步水热法制备纳米花状Ni3Fe/Ni3S2高效电催化剂促进碱性电解水析氧反应[J]. 粉末冶金材料科学与工程, 2023 , 28(5) : 427 -437 . DOI: 10.19976/j.cnki.43-1448/TF.2023039

Abstract

Ni3Fe/Ni3S2 oxygen evolution catalysts were synthesized by two-step hydrothermal method using Fe(NO3)3·9H2O and Na2S·9H2O as Fe source and S source, respectively, and nickel mesh (NM) as the Ni source and support substrate. The microstructure and morphology of the catalysts were analyzed by XRD, XPS, SEM, and TEM, and the electrochemical properties were tested by an electrochemical workstation. The results demonstrate that the Ni3Fe/Ni3S2 catalyst synthesized by the two-step hydrothermal method has rich three-dimensional nanoflower morphology, which enhances the spatial utilization of the catalyst. Ni3S2 exposes a high refractive index $\{\bar{2}10\}$. crystalline surface, which contributes to the synergistic effect with the (111) crystalline surface of Ni3Fe to enhance the catalytic activity. The oxygen evolution overpotential is 229 mV at a current density of 10 mA/cm2 in 1 mol/L KOH (25 ℃), the overpotential is 335 mV for a current density of 600 mA/cm2 in 5.35 mol/L KOH (80 ℃), and the decay rate of the overpotential is only 2.39% after 6 000 cyclic voltammetry cycles. It demonstrates that the catalyst has good oxygene evolution performance and stability.

参考文献

[1] SUN H, YAN Z, LIU F, et al.Self-supported transition- metal-based electrocatalysts for hydrogen and oxygen evolution[J]. Advanced Materials, 2020, 32(3): 1806326.
[2] MOYSIADOU A, LEE S, HSU C S, et al.Mechanism of oxygen evolution catalyzed by cobalt oxyhydroxide: cobalt superoxide species as a key intermediate and dioxygen release as a rate-determining step[J]. Journal of the American Chemical Society, 2020, 142(27): 11901-11914.
[3] XIE X, DU L, YAN L, et al.Oxygen evolution reaction in alkaline environment: material challenges and solutions[J]. Advanced Functional Materials, 2022, 32(21): 2110036.
[4] LEE Y, SUNTIVICH J, MAY K J, et al.Synthesis and activities of rutile IrO2 and RuO2 nanoparticles for oxygen evolution in acid and alkaline solutions[J]. The Journal of Physical Chemistry Letters, 2012, 3(3): 399-404.
[5] YANG L, LIU Z, ZHU S, et al.Ni-based layered double hydroxide catalysts for oxygen evolution reaction[J]. Materials Today Physics, 2021, 16: 100292.
[6] WU Z P, LU X F, ZANG S Q, et al.Non-noble-metal-based electrocatalysts toward the oxygen evolution reaction[J]. Advanced Functional Materials, 2020, 30(15): 1910274.
[7] HU H S, SI S, LIU R J, et al.Iron-nickel hydroxide nanoflake arrays supported on nickel foam with dramatic catalytic properties for the evolution of oxygen at high current densities[J]. International Journal of Energy Research, 2020, 44(11): 9222-9232.
[8] LI B Q, ZHANG S Y, TANG C, et al.Anionic regulated NiFe (oxy)sulfide electrocatalysts for water oxidation[J]. Small, 2017, 13(25): 1700610.
[9] FENG L L, YU G T, WU Y Y, et al.High-index faceted Ni3S2 nanosheet arrays as highly active and ultrastable electrocatalysts for water splitting[J]. Journal of the American Chemical Society, 2015, 137(44): 14023-14026.
[10] CHEN Y, XU Y, NIU S, et al.A highly efficient Fe-Ni-S/NF hybrid electrode for promoting oxygen evolution performance[J]. Chemical Communications, 2021, 57(37): 4572-4575.
[11] ZHONG M X, SONG N, LI C M, et al.Controllable growth of Fe-doped NiS2 on NiFe-carbon nanofibers for boosting oxygen evolution reaction[J]. Journal of Colloid and Interface Science, 2022, 614: 556-565.
[12] WANG P C, LIN Y Q, WAN L, et al.Construction of a janus MnO2-NiFe electrode via selective electrodeposition strategy as a high-performance bifunctional electrocatalyst for rechargeable zinc-air batteries[J]. Acs Applied Materials & Interfaces, 2019, 11(41): 37701-37707.
[13] DUAN J J, ZHANG R L, FENG J J, et al.Facile synthesis of nanoflower-like phosphorus-doped Ni3S2/CoFe2O4 arrays on nickel foam as a superior electrocatalyst for efficient oxygen evolution reaction[J]. Journal of Colloid and Interface Science, 2021, 581: 774-782.
[14] CHEN H, ZHANG P, XIE R, et al.High-temperature nitridation induced carbon nanotubes@NiFe-layered- double-hydroxide nanosheets taking as an oxygen evolution reaction electrocatalyst for CO2 electroreduction[J]. Advanced Materials Interfaces, 2021, 8(19): 2101165.
[15] KADIER A, SIMAYI Y, CHANDRASEKHAR K, et al.Hydrogen gas production with an electroformed Ni mesh cathode catalysts in a single-chamber microbial electrolysis cell (MEC)[J]. International Journal of Hydrogen Energy, 2015, 40(41): 14095-14103.
[16] WANG Z, LIAO X, LIN Z, et al.3D nitrogen-doped graphene encapsulated metallic nickel-iron alloy nanoparticles for efficient bifunctional oxygen electrocatalysis[J]. Chemistry-A European Journal, 2020, 26(18): 4044-4051.
[17] LIANG C, ZOU P, NAIRAN A, et al.Exceptional performance of hierarchical Ni-Fe oxyhydroxide@NiFe alloy nanowire array electrocatalysts for large current density water splitting[J]. Energy & Environmental Science, 2020, 13(1): 86-95.
[18] YANG Y Q, ZHANG K, LING H L, et al.MoS2-Ni3S2 heteronanorods as efficient and stable bifunctional electrocatalysts for overall water splitting[J]. Acs Catalysis, 2017, 7(4): 2357-2366.
[19] ZHOU J H, WANG Z G, YANG D X, et al.Free-standing S, N co-doped graphene/Ni foam as highly efficient and stable electrocatalyst for oxygen evolution reaction[J]. Electrochimica Acta, 2019, 317: 408-415.
[20] HU X J, HUANG T, TANG Y W, et al.Three-dimensional graphene-supported Ni3Fe/Co9S8 composites: rational design and active for oxygen reversible electrocatalysis[J]. Acs Applied Materials & Interfaces, 2019, 11(4): 4028-4036.
[21] ZHANG H, QIAN G F, YU T Q, et al.Interface engineering of Ni3Fe and FeV2O4 coupling with carbon-coated mesoporous nanosheets for boosting overall water splitting at 1 500 mA/cm2[J]. Acs Sustainable Chemistry & Engineering, 2021, 9(24): 8249-8256.
[22] VISSERS J P R, GROOT C K, VAN OERS E M, et al. Carbon-supported transition metal sulfides[J]. Bulletin des Sociétés Chimiques Belges, 1984, 93(8/9): 813-822.
[23] LIU C Y, MA H, YUAN M W, et al.(NiFe)S2 nanoparticles grown on graphene as an efficient electrocatalyst for oxygen evolution reaction[J]. Electrochimica Acta, 2018, 286: 195-204.
[24] SUN F, WANG G, DING Y, et al.NiFe-based metal-organic framework nanosheets directly supported on nickel foam acting as robust electrodes for electrochemical oxygen evolution reaction[J]. Advanced Energy Materials, 2018, 8(21): 1800584.
[25] BADRNEZHAD R, NASRI F, POURFARZAD H, et al.Effect of iron on Ni-Mo-Fe composite as a low-cost bifunctional electrocatalyst for overall water splitting[J]. International Journal of Hydrogen Energy, 2021, 46(5): 3821-3832.
[26] WANG Q Q, SONG Y Y, SUN D S, et al.MOF-derived Fe-doped Ni@NC hierarchical hollow microspheres as an efficient electrocatalyst for alkaline oxygen evolution reaction[J]. Acs Omega, 2021, 6(16): 11077-11082.
[27] HE W J, REN G, LI Y, et al.Amorphous nickel-iron hydroxide films on nickel sulfide nanoparticles for the oxygen evolution reaction[J]. Catalysis Science & Technology, 2020, 10(6): 1708-1713.
[28] ZHONG H, LIU T, ZHANG S, et al.Template-free synthesis of three-dimensional NiFe-LDH hollow microsphere with enhanced OER performance in alkaline media[J]. Journal of Energy Chemistry, 2019, 33(6): 130-137.
[29] LI N, HU Z, LI M, et al.Self-assembly of NiFe-LDH with birnessite via electrostatic attraction towards high- performance OER catalyst[J]. Materials Letters, 2020, 281: 128569.
[30] ZHOU Y, LI Y, ZHANG L, et al.Fe-leaching induced surface reconstruction of Ni-Fe alloy on N-doped carbon to boost oxygen evolution reaction[J]. Chemical Engineering Journal, 2020, 394: 124977.
[31] LIN Y P, WANG H, PENG C K, et al.Co-Induced electronic optimization of hierarchical NiFe LDH for oxygen evolution[J]. Small, 2020, 16(38): 2002426.
[32] JIANG B B, CHEONG W C, TU R Y, et al.Regulating the electronic structure of NiFe layered double hydroxide/ reduced graphene oxide by Mn incorporation for high- efficiency oxygen evolution reaction[J]. Science China Materials, 2021, 64(11): 2729-2738.
[33] MILLER E L, ROCHELEAU R E.Electrochemical behavior of reactively sputtered iron-doped nickel oxide[J]. Journal of the Electrochemical Society, 1997, 144(9): 3072-3077.
[34] LU F, ZHOU M, ZHOU Y X, et al.First-row transition metal based catalysts for the oxygen evolution reaction under alkaline conditions: basic principles and recent advances[J]. Small, 2017, 13(45): 1701931.
[35] LI Z J, WU X D, JIANG X, et al.Surface carbon layer controllable Ni3Fe particles confined in hierarchical N-doped carbon framework boosting oxygen evolution reaction[J]. Advanced Powder Materials, 2022, 1(2): 100020.
[36] LIANG Z, ZHOU P, WANG Z Y, et al.Electrodeposition of NiFe layered double hydroxide on Ni3S2 nanosheets for efficient electrocatalytic water oxidation[J]. International Journal of Hydrogen Energy, 2020, 45(15): 8659-8666.
[37] ZOU X X, ZHANG Y.Noble metal-free hydrogen evolution catalysts for water splitting[J]. Chemical Society Reviews, 2015, 44(15): 5148-5180.
[38] 代晓梅, 何捍卫. 泡沫镍基Ni-P-W-Mo析氢电极的制备与电化学性能[J]. 粉末冶金材料科学与工程, 2022, 27(6): 610-619.
DAI Xiaomei, HE Hanwei.Preparation and electrochemical properties of Ni-P-W-Mo hydrogen evolution electrode based on nickel foam[J]. Materials Science and Engineering of Powder Metallurgy, 2022, 27(6): 610-619.
文章导航

/

版权所有 © 《粉末冶金材料科学与工程》编辑部
地址:长沙市麓山南路中南大学粉末冶金研究院 邮编:410083 电话:0731-88877163 邮箱:pmbjb@csu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn