[1] SUN H, YAN Z, LIU F, et al.Self-supported transition- metal-based electrocatalysts for hydrogen and oxygen evolution[J]. Advanced Materials, 2020, 32(3): 1806326.
[2] MOYSIADOU A, LEE S, HSU C S, et al.Mechanism of oxygen evolution catalyzed by cobalt oxyhydroxide: cobalt superoxide species as a key intermediate and dioxygen release as a rate-determining step[J]. Journal of the American Chemical Society, 2020, 142(27): 11901-11914.
[3] XIE X, DU L, YAN L, et al.Oxygen evolution reaction in alkaline environment: material challenges and solutions[J]. Advanced Functional Materials, 2022, 32(21): 2110036.
[4] LEE Y, SUNTIVICH J, MAY K J, et al.Synthesis and activities of rutile IrO2 and RuO2 nanoparticles for oxygen evolution in acid and alkaline solutions[J]. The Journal of Physical Chemistry Letters, 2012, 3(3): 399-404.
[5] YANG L, LIU Z, ZHU S, et al.Ni-based layered double hydroxide catalysts for oxygen evolution reaction[J]. Materials Today Physics, 2021, 16: 100292.
[6] WU Z P, LU X F, ZANG S Q, et al.Non-noble-metal-based electrocatalysts toward the oxygen evolution reaction[J]. Advanced Functional Materials, 2020, 30(15): 1910274.
[7] HU H S, SI S, LIU R J, et al.Iron-nickel hydroxide nanoflake arrays supported on nickel foam with dramatic catalytic properties for the evolution of oxygen at high current densities[J]. International Journal of Energy Research, 2020, 44(11): 9222-9232.
[8] LI B Q, ZHANG S Y, TANG C, et al.Anionic regulated NiFe (oxy)sulfide electrocatalysts for water oxidation[J]. Small, 2017, 13(25): 1700610.
[9] FENG L L, YU G T, WU Y Y, et al.High-index faceted Ni3S2 nanosheet arrays as highly active and ultrastable electrocatalysts for water splitting[J]. Journal of the American Chemical Society, 2015, 137(44): 14023-14026.
[10] CHEN Y, XU Y, NIU S, et al.A highly efficient Fe-Ni-S/NF hybrid electrode for promoting oxygen evolution performance[J]. Chemical Communications, 2021, 57(37): 4572-4575.
[11] ZHONG M X, SONG N, LI C M, et al.Controllable growth of Fe-doped NiS2 on NiFe-carbon nanofibers for boosting oxygen evolution reaction[J]. Journal of Colloid and Interface Science, 2022, 614: 556-565.
[12] WANG P C, LIN Y Q, WAN L, et al.Construction of a janus MnO2-NiFe electrode via selective electrodeposition strategy as a high-performance bifunctional electrocatalyst for rechargeable zinc-air batteries[J]. Acs Applied Materials & Interfaces, 2019, 11(41): 37701-37707.
[13] DUAN J J, ZHANG R L, FENG J J, et al.Facile synthesis of nanoflower-like phosphorus-doped Ni3S2/CoFe2O4 arrays on nickel foam as a superior electrocatalyst for efficient oxygen evolution reaction[J]. Journal of Colloid and Interface Science, 2021, 581: 774-782.
[14] CHEN H, ZHANG P, XIE R, et al.High-temperature nitridation induced carbon nanotubes@NiFe-layered- double-hydroxide nanosheets taking as an oxygen evolution reaction electrocatalyst for CO2 electroreduction[J]. Advanced Materials Interfaces, 2021, 8(19): 2101165.
[15] KADIER A, SIMAYI Y, CHANDRASEKHAR K, et al.Hydrogen gas production with an electroformed Ni mesh cathode catalysts in a single-chamber microbial electrolysis cell (MEC)[J]. International Journal of Hydrogen Energy, 2015, 40(41): 14095-14103.
[16] WANG Z, LIAO X, LIN Z, et al.3D nitrogen-doped graphene encapsulated metallic nickel-iron alloy nanoparticles for efficient bifunctional oxygen electrocatalysis[J]. Chemistry-A European Journal, 2020, 26(18): 4044-4051.
[17] LIANG C, ZOU P, NAIRAN A, et al.Exceptional performance of hierarchical Ni-Fe oxyhydroxide@NiFe alloy nanowire array electrocatalysts for large current density water splitting[J]. Energy & Environmental Science, 2020, 13(1): 86-95.
[18] YANG Y Q, ZHANG K, LING H L, et al.MoS2-Ni3S2 heteronanorods as efficient and stable bifunctional electrocatalysts for overall water splitting[J]. Acs Catalysis, 2017, 7(4): 2357-2366.
[19] ZHOU J H, WANG Z G, YANG D X, et al.Free-standing S, N co-doped graphene/Ni foam as highly efficient and stable electrocatalyst for oxygen evolution reaction[J]. Electrochimica Acta, 2019, 317: 408-415.
[20] HU X J, HUANG T, TANG Y W, et al.Three-dimensional graphene-supported Ni3Fe/Co9S8 composites: rational design and active for oxygen reversible electrocatalysis[J]. Acs Applied Materials & Interfaces, 2019, 11(4): 4028-4036.
[21] ZHANG H, QIAN G F, YU T Q, et al.Interface engineering of Ni3Fe and FeV2O4 coupling with carbon-coated mesoporous nanosheets for boosting overall water splitting at 1 500 mA/cm2[J]. Acs Sustainable Chemistry & Engineering, 2021, 9(24): 8249-8256.
[22] VISSERS J P R, GROOT C K, VAN OERS E M, et al. Carbon-supported transition metal sulfides[J]. Bulletin des Sociétés Chimiques Belges, 1984, 93(8/9): 813-822.
[23] LIU C Y, MA H, YUAN M W, et al.(NiFe)S2 nanoparticles grown on graphene as an efficient electrocatalyst for oxygen evolution reaction[J]. Electrochimica Acta, 2018, 286: 195-204.
[24] SUN F, WANG G, DING Y, et al.NiFe-based metal-organic framework nanosheets directly supported on nickel foam acting as robust electrodes for electrochemical oxygen evolution reaction[J]. Advanced Energy Materials, 2018, 8(21): 1800584.
[25] BADRNEZHAD R, NASRI F, POURFARZAD H, et al.Effect of iron on Ni-Mo-Fe composite as a low-cost bifunctional electrocatalyst for overall water splitting[J]. International Journal of Hydrogen Energy, 2021, 46(5): 3821-3832.
[26] WANG Q Q, SONG Y Y, SUN D S, et al.MOF-derived Fe-doped Ni@NC hierarchical hollow microspheres as an efficient electrocatalyst for alkaline oxygen evolution reaction[J]. Acs Omega, 2021, 6(16): 11077-11082.
[27] HE W J, REN G, LI Y, et al.Amorphous nickel-iron hydroxide films on nickel sulfide nanoparticles for the oxygen evolution reaction[J]. Catalysis Science & Technology, 2020, 10(6): 1708-1713.
[28] ZHONG H, LIU T, ZHANG S, et al.Template-free synthesis of three-dimensional NiFe-LDH hollow microsphere with enhanced OER performance in alkaline media[J]. Journal of Energy Chemistry, 2019, 33(6): 130-137.
[29] LI N, HU Z, LI M, et al.Self-assembly of NiFe-LDH with birnessite via electrostatic attraction towards high- performance OER catalyst[J]. Materials Letters, 2020, 281: 128569.
[30] ZHOU Y, LI Y, ZHANG L, et al.Fe-leaching induced surface reconstruction of Ni-Fe alloy on N-doped carbon to boost oxygen evolution reaction[J]. Chemical Engineering Journal, 2020, 394: 124977.
[31] LIN Y P, WANG H, PENG C K, et al.Co-Induced electronic optimization of hierarchical NiFe LDH for oxygen evolution[J]. Small, 2020, 16(38): 2002426.
[32] JIANG B B, CHEONG W C, TU R Y, et al.Regulating the electronic structure of NiFe layered double hydroxide/ reduced graphene oxide by Mn incorporation for high- efficiency oxygen evolution reaction[J]. Science China Materials, 2021, 64(11): 2729-2738.
[33] MILLER E L, ROCHELEAU R E.Electrochemical behavior of reactively sputtered iron-doped nickel oxide[J]. Journal of the Electrochemical Society, 1997, 144(9): 3072-3077.
[34] LU F, ZHOU M, ZHOU Y X, et al.First-row transition metal based catalysts for the oxygen evolution reaction under alkaline conditions: basic principles and recent advances[J]. Small, 2017, 13(45): 1701931.
[35] LI Z J, WU X D, JIANG X, et al.Surface carbon layer controllable Ni3Fe particles confined in hierarchical N-doped carbon framework boosting oxygen evolution reaction[J]. Advanced Powder Materials, 2022, 1(2): 100020.
[36] LIANG Z, ZHOU P, WANG Z Y, et al.Electrodeposition of NiFe layered double hydroxide on Ni3S2 nanosheets for efficient electrocatalytic water oxidation[J]. International Journal of Hydrogen Energy, 2020, 45(15): 8659-8666.
[37] ZOU X X, ZHANG Y.Noble metal-free hydrogen evolution catalysts for water splitting[J]. Chemical Society Reviews, 2015, 44(15): 5148-5180.
[38] 代晓梅, 何捍卫. 泡沫镍基Ni-P-W-Mo析氢电极的制备与电化学性能[J]. 粉末冶金材料科学与工程, 2022, 27(6): 610-619.
DAI Xiaomei, HE Hanwei.Preparation and electrochemical properties of Ni-P-W-Mo hydrogen evolution electrode based on nickel foam[J]. Materials Science and Engineering of Powder Metallurgy, 2022, 27(6): 610-619.