首页   |   期刊介绍   |   编 委 会   |   投稿指南   |   出版法规   |   出版伦理   |   期刊订阅   |   联系我们   |   留言板   |   广告合作   |   ENGLISH
工艺技术

添加Yb对Al-Zn-Mg-Cu-Zr-Cr合金组织性能的影响

  • 段志英 ,
  • 张芊芊 ,
  • 方舟 ,
  • 方华婵 ,
  • 张茁 ,
  • 陈康华
展开
  • 1.中南大学 粉末冶金国家重点实验室,长沙 410083;
    2.中南大学 高等研究中心,长沙 410083

收稿日期: 2023-03-20

  修回日期: 2023-06-10

  网络出版日期: 2023-11-22

基金资助

国家重点基础研究发展计划资助项目(2005CB623704); 国家自然科学基金委员会创新研究群体科学基金资助项目(50721003); 国家自然科学基金资助项目(50471057); 中南大学大型仪器设备共享基金资助项目(CSUZC202109)

Effects of Yb addition on microstructure and properties of Al-Zn-Mg-Cu-Zr-Cr alloy

  • DUAN Zhiying ,
  • ZHANG Qianqian ,
  • FANG Zhou ,
  • FANG Huachan ,
  • ZHANG Zhuo ,
  • CHEN Kanghua
Expand
  • 1. State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China;
    2. Advance Research Center, Central South University, Changsha 410083, China

Received date: 2023-03-20

  Revised date: 2023-06-10

  Online published: 2023-11-22

摘要

采用熔炼铸造法制备复合添加Zr、Cr及复合添加Zr、Cr和Yb的2种Al-Zn-Mg-Cu合金。采用金相显微镜、透射电镜和扫描电镜观察合金的显微组织,并进行力学性能和抗腐蚀性能测试。结果表明:AlZnMgCu-Zr-Cr-Yb合金经固溶处理后始终保持以小角度晶界为主的纤维状组织,这归因于合金中析出的大量细小(10~20 nm)、弥散分布的(Al,Cr)3(Zr,Yb)相,阻碍了位错和晶界迁移,明显抑制基体再结晶。由于Yb元素的加入,合金的硬度、强度、伸长率和断裂韧性提高,断裂韧性由24.2 MPa·m1/2提高到32.4 MPa·m1/2。同时,合金的抗应力腐蚀、晶间腐蚀和剥落腐蚀性能提高,应力腐蚀开裂临界应力强度因子(KISCC)由10.6 MPa·m1/2提高到17.0 MPa·m1/2,晶间腐蚀深度减小,剥蚀敏感性降低,剥蚀等级由EB+降为EA。

本文引用格式

段志英 , 张芊芊 , 方舟 , 方华婵 , 张茁 , 陈康华 . 添加Yb对Al-Zn-Mg-Cu-Zr-Cr合金组织性能的影响[J]. 粉末冶金材料科学与工程, 2023 , 28(5) : 413 -426 . DOI: 10.19976/j.cnki.43-1448/TF.2023021

Abstract

Two kinds of Al-Zn-Mg-Cu alloys adding Zr, Cr elements and Zr, Cr and Yb clements were prepared by the melting and casting method, respectively. Optical microscopy, transmission electron microscopy, and scanning electron microscopy were used to observe the microstructure of these alloys, and mechanical and corrosion properties were also tested. The results show that AlZnMgCu-Zr-Cr-Yb alloy maintains a fibrous structure dominated by small angular grain boundaries after solid solution treatment, which is attributed to the precipitation of a large number of fine and diffuse (Al,Cr)3(Zr,Yb) phases of 10-20 nm, which can hinder dislocation and grain boundary migration and thus significantly inhibit matrix recrystallisation. The addition of Yb can increase the hardness, strength, elongation, and fracture toughness of the alloy, with the fracture toughness increases from 24.2 MPa·m1/2 to 32.4 MPa·m1/2. The resistances to stress corrosion, intergranular corrosion, and exfoliation corrosion all increase at the same time, with the threshold stress intensity factor for stress corrosion cracking (KISCC) increases from 10.6 MPa·m1/2 to 17.0 MPa·m1/2. The intergranular corrosion depth decreases, the exfoliation susceptibility reduces and the exfoliation grade lowers from EB+ to EA.

参考文献

[1] HOU X H, MA G X, BAI P C, et al.Investigation of the coherent strain evolution of the η′ phase in Al-Zn-Mg-Cu alloys via scanning transmission electron microscopy[J]. Journal of Alloys and Compounds, 2021, 856: 158111.
[2] WU W L, SONG Y L, ZHOU P, et al.Mechanical properties improvement of pre-deformed Al-Zn-Mg-Cu alloys by electroshocking treatment based on the non-equilibrium scattering of electron-dislocation[J]. Journal of Alloys and Compounds, 2020, 861: 157987.
[3] BAYATI M S, SHARIFI H, TAYEBI M, et al.Effect of Al-B4C nanocomposite filler manufactured by accumulative roll bonding (ARB) method on the microstructure and mechanical properties of weldings prepared by tungsten inert gas welding[J]. Materials Research Express, 2019, 6(10): 106529.
[4] ZOU Y, WU X D, TANG S B, et al.Investigation on microstructure and mechanical properties of Al-Zn-Mg-Cu alloys with various Zn/Mg ratios[J]. Journal of Materials Science and Technology, 2021, 85: 106-117.
[5] AZARNIYA A, TAHERI A K, TAHERI K K.Recent advances in ageing of 7xxx series aluminum alloys: a physical metallurgy perspective[J]. Journal of Alloys and Compounds, 2019, 781: 945-983.
[6] SHU W X, HOU L G, ZHANG C, et al.Tailored Mg and Cu contents affecting the microstructures and mechanical properties of high-strength Al-Zn-Mg-Cu alloys[J]. Materials Science and Engineering A, 2016, 657: 269-283.
[7] 王英君, 刘洪雷, 王国军, 等. 新型高强稀土Al-Zn- Mg-Cu-Sc铝合金的阳极氧化及其抗腐蚀性能研究[J]. 中国腐蚀与防护学报, 2020, 40(2): 131-138.
WANG Yingjun, LIU Honglei, WANG Guojun, et al.Investigation of anodic film on a novel RE-containing Al-alloy Al-Zn-Mg-Cu-Sc[J]. Journal of Chinese Society for Corrosion and Protection, 2020, 40(2): 131-138.
[8] YUAN D L, CHEN S Y, CHEN K H, et al.Correlations among stress corrosion cracking, grain-boundary microchemistry, and Zn content in high Zn-containing Al-Zn-Mg-Cu alloys[J]. Transactions of Nonferrous Metals Society of China, 2021, 31(8): 2220-2231.
[9] 许永祥, 方华婵, 段志英, 等. Cr、Zr微合金化超高强Al-Zn-Mg-Cu-Yb铸态合金的组织及腐蚀性能[J]. 粉末冶金材料科学与工程, 2022, 27(5): 519-531.
XU Yongxiang, FANG Huachan, DUAN Zhiying, et al.Microstructure and corrosion properties of Cr and Zr microalloyed ultra-high strength Al-Zn-Mg-Cu-Yb as-cast alloy[J]. Materials Science and Engineering of Powder Metallurgy, 2022, 27(5): 519-531.
[10] 韩宝帅, 曾元松, 荣刚, 等. 双级峰时效对超高强Al-Zn-Mg-Cu合金微观组织与力学性能的影响[J]. 中国有色金属学报, 2022, 32(3): 679-691.
HAN Baoshuai, ZENG Yuansong, RONG Gang, et al.Effect of two-stage peak ageing on microstructure and mechanical properties of ultra-high strength Al-Zn-Mg Cu alloy[J]. The Chinese Journal of Nonferrous Metals, 2022, 32(3): 679-691.
[11] XU X J, MAO Q, JIANG Z, et al.Effect of multi-stage solution and aging process on microstructure and properties of Al-11.2Zn-3.0Mg-1.3Cu-0.2Zr aluminum alloy extrusion[J]. Materials Letters, 2019, 254: 375-378.
[12] 彭景, 陈志国, 任杰克, 等. 新型热机械处理对7050铝合金微观组织与性能的影响[J]. 中国有色金属学报, 2018, 28(11): 2182-2190.
PENG Jing, CHEN Zhiguo, REN Jieke, et al.Effect of novel thermo-mechanical treatment on microstructure and properties of 7050 aluminum alloy[J]. The Chinese Journal of Nonferrous Metals, 2018, 28(11): 2182-2190.
[13] MARQUIS E A, SEIDMAN D N.Nanoscale structural evolution of Al3Sc precipitates in Al(Sc) alloys[J]. Acta Materialia, 2001, 49(11): 1909-1919.
[14] YANG J J, NIE Z R, JIN T N.Effect of trace rare earth element Er on high pure Al[J]. Transactions of Nonferrous Metals Society of China, 2003, 13(5): 1035-1039.
[15] TANG C L, ZHOU D J.Precipitation hardening behavior of dilute binary Al-Yb alloy[J]. Transactions of Nonferrous Metals Society of China, 2014, 24(7): 2326-2330.
[16] IWAMURA S, MIURA Y.Loss in coherency and coarsening behavior of Al3Sc precipitates[J]. Acta Materialia, 2004, 52(3): 591-600.
[17] KHERADMAND A B, MIRDAMADI S, LALEGANI Z, et al.Effect of thermomechanical treatment of Al-Zn-Mg-Cu with minor amount of Sc and Zr on the mechanical properties[J]. Materials, 2022, 15(2): 589-608.
[18] LI G, ZHAO N Q, LIU T, et al.Effect of Sc/Zr ratio on the microstructure and mechanical properties of new type of Al-Zn-Mg-Sc-Zr alloys[J]. Materials Science and Engineering A, 2014, 617: 219-227.
[19] DURSUN T, SOUTIS C.Recent developments in advanced aircraft aluminium alloys[J]. Materials and Design, 2014, 56: 862-871.
[20] WU H, WEN S P, LU J T, et al.Microstructural evolution of new type Al-Zn-Mg-Cu alloy with Er and Zr additions during homogenization[J]. Transactions of Nonferrous Metals Society of China, 2017, 27(7): 1476-1482.
[21] WU H, LI W C, WEN S P, et al.The effect of various RRA treatments on the strength and corrosion behavior of a new type of Al-Zn-Mg-Er-Zr alloy[J]. Materials and Corrosion, 2022, 73(2): 180-188.
[22] PENG G S, CHEN K H, FANG H C, et al.Effect of Cr and Yb additions on microstructure and properties of low copper Al-Zn-Mg-Cu-Zr alloy[J]. Materials and Design, 2012, 36: 279-283.
[23] PENG G S, CHEN K H, FANG H C, et al.A study of nanoscale Al3(Zr,Yb) dispersoids structure and thermal stability in Al-Zr-Yb alloy[J]. Materials Science and Engineering A, 2012, 535: 311-315.
[24] FANG H C, CHEN K H, CHEN X, et al.Effect of Cr, Yb and Zr additions on localized corrosion of Al-Zn-Mg-Cu alloy[J]. Corrosion Science, 2009, 51(12): 2872-2877.
[25] FANG H C, LUO F H, CHEN K H.Effect of intermetallic phases and recrystallization on the corrosion and fracture behavior of an Al-Zn-Mg-Cu-Zr-Yb-Cr alloy[J]. Materials Science and Engineering A, 2017, 684: 480-490.
[26] DING L P, ZHAO L, WENG Y Y, et al.Atomic-scale investigation of the heterogeneous precipitation in the E (Al18Mg3Cr2) dispersoid of 7075 aluminum alloy[J]. Journal of Alloys and Compounds, 2021, 851: 156890.
[27] 刘胜胆, 李承波, 欧阳惠, 等. 超高强7000系铝合金的淬火敏感性[J]. 中国有色金属学报, 2013, 23(4): 927-938.
LIU Shengdan, LI Chengbo, OUYANG Hui, et al.Quench sensitivity of ultra-high strength 7000 series aluminum alloys[J]. The Chinese Journal of Nonferrous Metals, 2013, 23(4): 927-938.
[28] 宁爱林, 刘志义, 冯春, 等. Al-Zn-Mg-Cu合金组织和电导率及抗应力腐蚀性能研究[J]. 材料热处理学报, 2008, 29(2): 108-113.
NING Ailin, LIU Zhiyi, FENG Chun, et al.Study of microstructure, electrical conductivity and stress corrosion resistance of Al-Zn-Mg-Cu alloys[J]. Transactions of Materials and Heat Treatment, 2008, 29(2): 108-113.
[29] 李玉乾, 叶凌英, 张新明, 等. Cr和Yb复合添加对2519A铝合金组织和力学性能的影响[J]. 中南大学学报(自然科学版), 2014, 45(7): 2182-2186.
LI Yuqian, YE Lingying, ZHANG Xinming, et al.Effects of Cr and Yb additions on microstructures and mechanical properties of 2519A aluminum alloy[J]. Journal of Central South University (Science and Technology), 2014, 45(7): 2182-2186.
[30] ROLLETT A, HUMPHREYS F J, ROHRER G S, et al.Recrystallization and Related Annealing Phenomena[M]. Oxford: Elsevier, 2004: 285-319.
[31] CHAN H M, HUMPHREYS F J.Effect of particle stimulated nucleation on orientation of recrystallized grains[J]. Metal Science, 1984, 18(11): 527-530.
[32] NIE J F, MUDDLE B C.Strengthening of an Al-Cu-Sn alloy by deformation-resistant precipitate plates[J]. Acta Materialia, 2008, 56(14): 3490-3501.
[33] KAMP N, SINCLAIR I, STARINK M J.Toughness-strength relations in the overaged 7449 Al-based alloy[J]. Metallurgical and Materials Transactions A, 2002, 33: 1125-1136.
[34] SINYAVSKII V S, ULANOVA V V, KALININ V D.On the mechanism intergranualr corrosion of aluminum alloys[J]. Protection of Metals, 2004, 40(5): 537-546.
[35] 黄继武, 朱鑫文, 赖毅, 等. 共格Al3(Sc1-xZrx)粒子提升高强铝合金棒材强度和耐蚀性能的机理[J]. 中国有色金属学报, 2021, 31(6): 1436-1451.
HUANG Jiwu, ZHU Xinwen, LAI Yi, et al.Mechanisms of simultaneously improving strength and corrosion performance of Al-5.98Zn-1.88Mg-0.41Cu alloy bars by coherent Al3(Sc1-xZrx) particles[J]. The Chinese Journal of Nonferrous Metals, 2021, 31(6): 1436-1451.
文章导航

/

版权所有 © 《粉末冶金材料科学与工程》编辑部
地址:长沙市麓山南路中南大学粉末冶金研究院 邮编:410083 电话:0731-88877163 邮箱:pmbjb@csu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn