首页   |   期刊介绍   |   编 委 会   |   投稿指南   |   出版法规   |   出版伦理   |   期刊订阅   |   联系我们   |   留言板   |   广告合作   |   ENGLISH
工艺技术

无定形NiCoSe电极的碱性电解水析氢性能

  • 彭振新 ,
  • 何捍卫
展开
  • 中南大学 粉末冶金研究院,长沙 410083

收稿日期: 2023-04-12

  修回日期: 2023-05-23

  网络出版日期: 2023-09-21

Hydrogen evolution performance of amorphous NiCoSe electrode for alkaline electrolysis of water

  • PENG Zhenxin ,
  • HE Hanwei
Expand
  • Powder Metallurgy Research Institute, Central South University, Changsha 410083, China

Received date: 2023-04-12

  Revised date: 2023-05-23

  Online published: 2023-09-21

摘要

采用电沉积法在镍丝网上合成Ni、Co共掺杂的无定形硒化物NiCoSe作为析氢催化剂电极,利用扫描电镜、X射线衍射仪、透射电镜、X射线光电子能谱仪等观察和分析NiCoSe电极的形貌与结构,通过电化学实验测试电极的电催化析氢性能。结果表明,NiCoSe电极表面镶嵌着球形NiCoSe颗粒,无明显裂纹。NiCoSe化合物为无定形状态,能提供更多的低能垒空穴。适当比例的Ni、Co共掺杂可对Se的电子结构进行调控,使催化剂的电子结合能发生偏移,进而增强催化剂对H原子的吸附能力,使NiCoSe析氢催化剂电极具有较高的本征催化活性。在1 mol/L KOH溶液中10 mA/cm2电流密度下,NiCoSe阴极的过电位为83 mV,塔菲尔斜率为108.98 mV/dec,控制反应速率的步骤为催化剂对H原子的吸附过程。在60 h电解后电流密度衰减率小于5%。

本文引用格式

彭振新 , 何捍卫 . 无定形NiCoSe电极的碱性电解水析氢性能[J]. 粉末冶金材料科学与工程, 2023 , 28(4) : 379 -389 . DOI: 10.19976/j.cnki.43-1448/TF.2023045

Abstract

Ni and Co co-doped amorphous selenide was synthesized on nickel mesh as hydrogen evolution catalyst electrode by electrode position method, and the morphology and microstructure of NiCoSe electrode were observed and analyzed by scanning electron microscopy, X-ray diffractometer, transmission electron microscopy and X-ray photoelectron spectrometer, and the electrocatalytic hydrogen evolution performance of the electrode was tested by electrochemical experiments. The results show that the NiCoSe electrode surface is embedded with NiCoSe spherical particles, and no obvious cracks. NiCoSe compound is amorphous and can provide more low-energy barrier cavities. The appropriate ratio of Ni and Co co-doping can modulate the electronic structure of Se to shift the electronic binding energy of the catalyst, which in turn enhances the adsorption ability of the catalyst to H atoms, resulting in a higher intrinsic catalytic activity of the NiCoSe hydrogen evolution catalyst electrode. At a current density of 10 mA/cm2 in 1 mol/L KOH solution, the overpotential of the NiCoSe cathode is 83 mV, and the Tafel slope is 108.98 mV/dec. The step controlling the reaction rate is the adsorption process of the catalyst on H atoms. The current density decay rate is less than 5% after 60 h electrolysis.

参考文献

[1] TANG T M, WANG Z L, GUAN J Q.A review of defect engineering in two-dimensional materials for electrocatalytic hydrogen evolution reaction[J]. Chinese Journal of Catalysis, 2022, 43(3): 636-678.
[2] 代晓梅, 何捍卫. 泡沫镍基Ni-P-W-M析氢电极的制备与电化学性能[J]. 粉末冶金材料科学与工程, 2023, 27(6): 610-619.
DAI Xiaomei, HE Hanwei.Preparation and electrochemical properties of Ni-P-W-Mo hydrogen evolution electrode based on nickel foam[J]. Materials Sciemce and Engineering of Powder Melallurgy, 2023, 27(6): 610-319.
[3] MERKI D, HU X L.Recent developments of molybdenum and tungsten sulfides as hydrogen evolution catalysts[J]. Energy and Environmental Science, 2011, 4(10): 3878-3888.
[4] ZHOU Y, HU J L, YANG L C, et al.Recent advances of two-dimensional CoFe layered-double-hydroxides for electrocatalytic water oxidation[J]. Chinese Chemical Letters, 2022, 33(6): 2845-2855.
[5] YU S S, ZOU Y J, WANG Q Y, et al.Self-supported Co-Mo sulfide in electrospun carbon nanofibers as electrocatalysts for hydrogen evolution reaction in alkaline medium[J]. Journal of Alloys and Compounds, 2022, 911: 165094.
[6] SUN J P, LI J, LI Z Z, et al.Phase transition in cobalt selenide with a greatly improved electrocatalytic activity in hydrogen evolution reactions[J]. ACS Sustainable Chemistry and Engineering, 2022, 10(12): 4022-4030.
[7] ZHU J J, LU Y K, ZHENG X Y, et al.Heterostructure arrays of (Ni,Co)Se2 nanowires integrated with MOFs-derived CoSe2 dodecahedra for synergistically high-efficiency and stable overall water splitting[J]. Applied Surface Science, 2022, 592: 153352.
[8] SIVANANTHAM A, SHANMUGAM S.Nickel selenide supported on nickel foam as an efficient and durable non- precious electrocatalyst for the alkaline water electrolysis[J]. Applied Catalysis B: Environmental, 2017, 203: 485-493.
[9] DO H H, NGUYEN C C, NGUYEN D L T, et al. MOF- derived NiSe2 nanoparticles grown on carbon fiber as a binder-free and efficient catalyst for hydrogen evolution reaction[J]. International Journal of Hydrogen Energy, 2022, 47(98): 41587-41595.
[10] ZIMRON O, ZILBERMAN T, KADAM S R, et al.Co-doped MoSe2 nanoflowers as efficient catalysts for electrochemical hydrogen evolution reaction (HER) in acidic and alkaline media[J]. Israel Journal of Chemistry, 2020, 60(5/6): 624-629.
[11] BOPPELLA R, TAN J, YUN J, et al.Anion-mediated transition metal electrocatalysts for efficient water electrolysis: recent advances and future perspectives[J]. Coordination Chemistry Reviews, 2021, 427: 213552.
[12] GAO D D, WU X H, WANG P, et al.Selenium-enriched amorphous NiSe1+x nanoclusters as a highly efficient cocatalyst for photocatalytic H2 evolution[J]. Chemical Engineering Journal, 2021, 408: 127230.
[13] MERKI D, FIERRO S, VRUBEL H, et al.Amorphous molybdenum sulfide films as catalysts for electrochemical hydrogen production in water[J]. Chemical Science, 2011, 2(7): 1262-1267.
[14] MERKI D, VRUBEL H, ROVELLI L, et al.Fe, Co, and Ni ions promote the catalytic activity of amorphous molybdenum sulfide films for hydrogen evolution[J]. Chemical Science, 2012, 3(8): 2515-2525.
[15] VRUBEL H, MERKI D, HU X L.Hydrogen evolution catalyzed by MoS3 and MoS2 particles[J]. Energy and Environmental Science, 2012, 5(3): 6136-6144.
[16] LIN Q Y, HOGLUND E, ZANGARI G.Electrodeposition of Fe-Ni alloy on Au (111) substrate: metastable BCC growth via hydrogen evolution and interactions[J]. Electrochimica Acta, 2020, 338: 135876.
[17] KADIER A, SIMAYI Y, CHANDRASEKHAR K, et al.Hydrogen gas production with an electroformed Ni mesh cathode catalysts in a single-chamber microbial electrolysis cell (MEC)[J]. International Journal of Hydrogen Energy, 2015, 40(41): 14095-14103.
[18] SUN S F, SUN G P, CHENG P F, et al.IRS-corrections induce potentially misjudging toward electrocatalytic water oxidation[J]. Materials Today Energy, 2023, 32: 101246.
[19] ASLAN E, SARILMAZ A, YANALAK G, et al.Facile preparation of amorphous NiWSex and CoWSex nanoparticles for the electrocatalytic hydrogen evolution reaction in alkaline condition[J]. Journal of Electroanalytical Chemistry, 2020, 856: 113674.
[20] HOU L Q, YANG W, XU X W, et al.In-situ formation of oxygen-vacancy-rich NiCo2O4/nitrogen-deficient graphitic carbon nitride hybrids for high-performance supercapacitors[J]. Electrochimica Acta, 2020, 340: 135996.
[21] MANSOUR A N.Characterization of NiO by XPS[J]. Surface Science Spectra, 1994, 3(3): 231-238.
[22] CHEN Y J, REN Z Y, FU H Y, et al.NiSe-Ni0.85Se heterostructure nanoflake arrays on carbon paper as efficient electrocatalysts for overall water splitting[J]. Small, 2018, 14(25): 1800763.
[23] ZHANG F F, PEI Y, GE Y C, et al.Controlled synthesis of eutectic NiSe/Ni3Se2 self-supported on Ni foam: an excellent bifunctional electrocatalyst for overall water splitting[J]. Advanced Materials Interfaces, 2018, 5(8): 1701507.
[24] MORALES-GUIO C G, STERN L A, HU X L. Nanostructured hydrotreating catalysts for electrochemical hydrogen evolution[J]. Chemical Society Reviews, 2014, 43(18): 6555-6569.
[25] XIAO C L, LI Y B, LU X Y, et al.Bifunctional porous NiFe/NiCo2O4/Ni foam electrodes with triple hierarchy and double synergies for efficient whole cell water splitting[J]. Advanced Functional Materials, 2016, 26(20): 3515-3523.
[26] LI G, FENG S Y, WANG C T, et al.Co-NiSe2/NF nanosheet for efficient hydrogen evolution reaction[J]. Catalysis Communications, 2022, 165: 106443.
[27] LIU B, ZHAO Y F, PENG H Q, et al.Nickel-cobalt diselenide 3D mesoporous nanosheet networks supported on Ni foam: an all-pH highly efficient integrated electrocatalyst for hydrogen evolution[J]. Advanced Materials, 2017, 29(19): 1606521.
[28] PATIL K, BABAR P, LI X, et al.Facile electrodeposited NiMoSe nanospheres for hydrogen evolution reaction[J]. Materials Letters, 2022, 310: 131409.
[29] CARIM A I, SAADI F H, SORIAGA M P, et al.Electrocatalysis of the hydrogen-evolution reaction by electrodeposited amorphous cobalt selenide films[J]. Journal of Materials Chemistry A, 2014, 2(34): 13835-13839.
[30] GAO Y, HE H W, TAN W Y, et al.One-step potentiostatic electrodeposition of Ni-Se-Mo film on Ni foam for alkaline hydrogen evolution reaction[J]. International Journal of Hydrogen Energy, 2020, 45(11): 6015-6023.
[31] SHI J L, HU J M, LUO Y L, et al.Ni3Se2 film as a non-precious metal bifunctional electrocatalyst for efficient water splitting[J]. Catalysis Science and Technology, 2015, 5(11): 4954-4958.
[32] LIU T T, LIU Q, ASIRI A M, et al.An amorphous CoSe film behaves as an active and stable full water-splitting electrocatalyst under strongly alkaline conditions[J]. Chemical Communications, 2015, 51(93): 16683-16686.
[33] LI X Y, QIAN X, XU Y L, et al.Electrodeposited cobalt phosphides with hierarchical nanostructure on biomass carbon for bifunctional water splitting in alkaline solution[J]. Journal of Alloys and Compounds, 2020, 829: 154535.
[34] GAO Y, WU Y H, HE H W, et al.Potentiostatic electrodeposition of Ni-Se-Cu on nickel foam as an electrocatalyst for hydrogen evolution reaction[J]. Journal of Colloid and Interface Science, 2020, 578: 555-564.
[35] MALEKI M, ROUHAGHDAM A S, DARBAND G B, et al.Highly active and durable NiCoSeP nanostructured electrocatalyst for large-current-density hydrogen production[J]. ACS Applied Energy Materials, 2022, 5(3): 2937-2948.
文章导航

/

版权所有 © 《粉末冶金材料科学与工程》编辑部
地址:长沙市麓山南路中南大学粉末冶金研究院 邮编:410083 电话:0731-88877163 邮箱:pmbjb@csu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn