首页   |   期刊介绍   |   编 委 会   |   投稿指南   |   出版法规   |   出版伦理   |   期刊订阅   |   联系我们   |   留言板   |   广告合作   |   ENGLISH
工艺技术

超声冷冻干燥混粉工艺对WC-6Co-GO/Al2O3硬质合金组织及性能的影响

  • 张振 ,
  • 苏武丽 ,
  • 孙兰
展开
  • 四川大学 机械工程学院,成都 610065

收稿日期: 2023-03-28

  修回日期: 2023-06-03

  网络出版日期: 2023-09-21

Effects of powder mixing process by ultrasonic freeze-drying method on the microstructure and properties of WC-6Co-Go/Al2O3 cemented carbide

  • ZHANG Zhen ,
  • SU Wuli ,
  • SUN Lan
Expand
  • School of Mechanical Engineering, Sichuan University, Chengdu 610065, China

Received date: 2023-03-28

  Revised date: 2023-06-03

  Online published: 2023-09-21

摘要

分别采用机械球磨法和球磨-超声-冷冻干燥法制备WC-6Co-GO/Al2O3混合粉末,并通过冷压成形-烧结制备块体硬质合金,研究混粉工艺和GO/Al2O3复合粒子含量对混合粉末的分散性以及合金的微观形貌、致密度和力学性能的影响。结果表明:超声-冷冻干燥可以有效地解决GO/Al2O3复合粒子的团聚问题,获得细小均匀的粉末颗粒。采用球磨-超声-冷冻干燥法混粉时,所制备的GO/Al2O3复合粒子质量分数为0.15%的硬质合金中,复合粒子均匀分布在WC晶粒间使细化晶粒的效果较显著,而且合金的相对密度较高,合金的强度提高至2 723.6 MPa,比普通机械球磨的合金提高约600 MPa,硬度(HV30)和断裂韧性分别提高约200.0和1.0 MPa∙m1/2

本文引用格式

张振 , 苏武丽 , 孙兰 . 超声冷冻干燥混粉工艺对WC-6Co-GO/Al2O3硬质合金组织及性能的影响[J]. 粉末冶金材料科学与工程, 2023 , 28(4) : 338 -346 . DOI: 10.19976/j.cnki.43-1448/TF.2023030

Abstract

The mixed powders of WC-6Co-GO/Al2O3 were prepared by mechanical ball milling method and ball milling-ultrasonic-freeze-drying method, respectively, and the bulk cemented carbide was prepared by cold press forming-sintering. The effects of the mixing process and the content of GO/Al2O3 composite particles on the dispersion of the mixed powders and the microscopic morphology, density and mechanical properties of the alloy were studied. The results show that ultrasonic freeze-drying can effectively solve the agglomeration problem of GO/Al2O3 composite particles and obtain fine uniform powder particles. In the prepared cemented carbide with the mass fraction of GO/Al2O3 composite particles of 0.15% when mixing powder by ball milling-ultrasonic- freeze-drying method, the composite particles are uniformly distributed among the WC grains to make the effect of refining the grains more significant, and the relative density of the alloy is higher, and the strength of the alloy increases to 2 723.6 MPa, which is about 600 MPa higher than that of the alloy with ordinary mechanical ball milling, and the hardness (HV30) and toughness also increase by about 200.0 and 1.0 MPa∙m1/2, respectively.

参考文献

[1] 黄伯云, 韦伟峰, 李松林, 等. 现代粉末冶金材料与技术进展[J]. 中国有色金属学报, 2019, 29(9): 1917-1933.
HUANG Boyun, WEI Weifeng, LI Songlin, et al.Development of modern powder metallurgy materials and technology[J]. The Chinese Journal of Nonferrous Metals, 2019, 29(9): 1917-1933.
[2] BONACHE V, SALVADOR M D, ROCHA V G, et al.Microstructural control of ultrafine and nanocrystalline WC-12Co-VC/Cr3C2 mixture by spark plasma sintering[J]. Ceramics International, 2011, 37(3): 1139-1142.
[3] SOLEIMANPOUR A M, ABACHI P, SIMCHI A.Microstructure and mechanical properties of WC-10Co cemented carbide containing VC or (Ta,Nb)C and fracture toughness evaluation using different models[J]. International Journal of Refractory Metals and Hard Materials, 2012, 31(2): 141-146.
[4] 王春光, 张立, 黄祥, 等. 合金添加剂对WC基硬质合金氧化行为及其关联特性的影响[J]. 粉末冶金材料科学与工程, 2023, 28(3): 296-304.
WANG Chunguang, ZHANG Li, HUANG Xiang, et al.Effects of alloy additives on oxidation behavior and correlative characteristics of WC-based cemented carbides[J]. Materials Science and Engineering of Powder Metallurgy, 2023, 28(3): 296-304.
[5] SU W L, ZOU J, SUN L.Effects of nano-alumina on mechanical properties and wear resistance of WC-8Co cemented carbide by spark plasma sintering[J]. International Journal of Refractory Metals and Hard Materials, 2020, 92(7): 105337.
[6] NOVOSELOV K S, FAL’KO V I, COLOMBO L, et al. A roadmap for graphene[J]. Nature, 2012, 490(7419): 192-200.
[7] SHARIFI T, XIE Y, ZHANG X, et al.Graphene as an electrochemical transfer layer[J]. Carbon, 2019, 141(1): 266-273.
[8] BODIS E, CORA I, BALAZI C, et al.Spark plasma sintering of graphene reinforced silicon carbide ceramics[J]. Ceramics International, 2017, 43(12): 9005-9011.
[9] MAZILOVA T I, SADANOV E V, MIKHAILOVSKIJ I M.Tensile strength of graphene nanoribbons: an experimental approach[J]. Materials Letters, 2019, 242(9): 17-19.
[10] SU W L, LI S, SUN L.Effect of multilayer graphene as a reinforcement on mechanical properties of WC-6Co cemented carbide[J]. Ceramics international, 2020, 46(10): 15392-15399.
[11] SUN J L, ZHAO J, GONG F, et al.Design, fabrication and characterization of multi-layer graphene reinforced nanostructured functionally graded cemented carbides[J]. Journal of Alloys and Compounds, 2018, 750(21): 972-979.
[12] SU W L, ZOU J, LI S, et al.Mechanical properties of low- pressure sintered WC-6Co cemented carbide doped with graphene oxide/alumina composite particles[J]. Ceramics International, 2021, 47(12): 16528-16537.
[13] 翟立力, 席晓丽, 童培云, 等. 冷冻干燥技术在新材料领域中的应用[J]. 材料导报, 2006, 20(8): 104-106.
ZHAI Lili, XI Xiaoli, TONG Peiyun, et al.The application of freeze drying in advanced materials[J]. Materials Reports, 2006, 20(8): 104-106.
[14] FAN Y C, IGARASHI G, JIANG W, et al.Highly strain tolerant and tough ceramic composite by incorporation of graphene[J]. Carbon, 2015, 90(10): 274-283.
[15] 中国有色金属工业协会. 硬质合金显微组织的金相测定:第2部分 WC晶粒尺寸的测量: GB/T 3488.2—2018[S]. 北京: 中国标准出版社, 2018.
Nonferrous Metals Industry Association of China. Hardmetals metallographic determination of microstructure: part 2 measurement of WC grain size: GB/T 3488.2—2018 [S]. Beijing: Standards Press of China, 2018.
[16] DMYTRO D, ANDREY R, DINESH A.Initial stage sintering of binderless tungsten carbide powder under microwave radiation[J]. Ceramics International, 2010, 37(2): 505-512.
[17] 李金普, 施瑜蕾, 柳学全, 等. 低压烧结温度对WC-6Ni无磁硬质合金性能的影响[J]. 粉末冶金工业, 2021, 31(1): 46-50.
LI Jinpu, SHI Yulei, LIU Xuequan, et al.Effects of sintering temperatures on performance of WC-6Ni non-magnetic cemented carbide by sinter-HIP[J]. Powder Metallurgy Industry, 2021, 31(1): 46-50.
[18] 李志和, 段石田, 汪德根, 等. WC-Co硬质合金组织结构对断裂韧性和断裂影响的研究[J]. 钢铁研究总院学报, 1985(S1): 101-110.
LI Zhihe, DUAN Shitian, WANG Degen, et al.Influence of structures on fracture and fracture toughness of WC-Co composites[J]. Central Iron and Steel Research Institute Technical Bulletin, 1985(S1): 101-110.
文章导航

/

版权所有 © 《粉末冶金材料科学与工程》编辑部
地址:长沙市麓山南路中南大学粉末冶金研究院 邮编:410083 电话:0731-88877163 邮箱:pmbjb@csu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn