首页   |   期刊介绍   |   编 委 会   |   投稿指南   |   出版法规   |   出版伦理   |   期刊订阅   |   联系我们   |   留言板   |   广告合作   |   ENGLISH
工艺技术

溶胶凝胶、碳热/硼热还原法制备ZrB2-SiC-LaB6超细复相粉体

  • 周哲 ,
  • 夏大旺 ,
  • 李智 ,
  • 廖桓毅 ,
  • 金鑫
展开
  • 1.长沙理工大学 材料科学与工程学院,长沙 410114;
    2.湘潭大学 材料科学与工程学院,湘潭 411105

收稿日期: 2023-01-19

  修回日期: 2023-02-17

  网络出版日期: 2023-07-06

基金资助

湖南省教育厅自然科学研究项目(21B0352)

Preparation of ZrB2-SiC-LaB6 ultrafine multiphase powders by sol-gel and carbothermal/borothermal reduction

  • ZHOU Zhe ,
  • XIA Dawang ,
  • LI Zhi ,
  • LIAO Huanyi ,
  • JIN Xin
Expand
  • 1. School of Materials Science and Engineering, Changsha University of Science and Technology, Changsha 410114, China;
    2. School of Materials Science and Engineering, Xiangtan University, Xiangtan 411105, China

Received date: 2023-01-19

  Revised date: 2023-02-17

  Online published: 2023-07-06

摘要

以氧氯化锆(ZrOCl2∙8H2O)、硼酸(H3BO3)、水合氯化镧(LaCl3∙7H2O)、正规酸乙酯(TESO)和葡萄糖(C6H12O6)为主要原料,以聚乙二醇(PEG)为分散剂,采用溶胶凝胶法和碳热/硼热还原工艺制备ZrB2-SiC-LaB6超细复相粉体。利用X射线衍射、扫描电镜、红外光谱和差示扫描量热分析等对ZrB2-SiC-LaB6粉体进行表征,研究烧结温度、原料配比对复相粉体合成过程的影响。结果表明,当原料中n(Zr)∶n(B)∶n(Si)∶ n(La)∶n(C)=1∶3∶0.7∶0.16∶8时,在氩气气氛中1 500 ℃保温2 h,可合成高纯ZrB2-SiC-LaB6超细复相粉体。颗粒平均粒径为300 nm,其中ZrB2相为六方晶系,SiC相和LaB6相为立方晶系,三元微晶平均尺寸为33.2 nm。

本文引用格式

周哲 , 夏大旺 , 李智 , 廖桓毅 , 金鑫 . 溶胶凝胶、碳热/硼热还原法制备ZrB2-SiC-LaB6超细复相粉体[J]. 粉末冶金材料科学与工程, 2023 , 28(3) : 223 -232 . DOI: 10.19976/j.cnki.43-1448/TF.2023005

Abstract

ZrB2-SiC-LaB6 ultrafine multiphase powders were prepared by the way of sol-gel method and carbothermal/borothermal reduction process, using zirconium oxychloride (ZrOCl2·8H2O), boric acid (H3BO3), hydrated lanthanum chloride (LaCl3·7H2O), ethyl orthoate (TESO), and glucose (C6H12O6) as the main raw materials, polyethylene glycol (PEG) as the dispersant. The effects of different temperatures and raw material ratios on the synthesis process of composite powders were studied and characterized by X-ray diffraction, SEM, infrared spectroscopy, and differential thermal scanning. The results show that when n(Zr)∶n(B)∶n(Si)∶n(La)∶n(C) =1∶3∶0.7∶0.16∶8 in the raw material, ZrB2-SiC-LaB6 superfine multiphase powders can be synthesized by holding at 1 500 ℃ for 2 h under argon atmosphere. The average particle size of multiphase powder is 300 nm, in which ZrB2 phase is hexagonal crystal system, SiC and LaB6 phase are cubic system, and the average size of ternary crystallite is 33.2 nm.

参考文献

[1] JACKSON T A, EKLUND D R, FINK A J.High speed propulsion: performance advantage of advanced materials[J]. Journal of Materials Science, 2004, 39: 5905-5913.
[2] VAN WIE D M, DREWRY D G, KING D E, et al. The hypersonic environment: required operating conditions and design challenges[J]. Journal of Materials Science, 2004, 39: 5915-5924.
[3] KASHYAP S K, MITRA R.Microstructure and composition of multi-layered oxide scale evolved during isothermal exposure of ZrB2-SiC-LaB6 composite to air at 1 500 ℃[J]. Philosophical Magazine Letters, 2021, 101: 265-276.
[4] ASL M S, NAMINI A S, MOTALLEBZADEH A, et al.Effects of sintering temperature on microstructure and mechanical properties of spark plasma sintered titanium[J]. Materials Chemistry and Physics, 2018, 203: 266-273.
[5] TORABI S, VALEFI Z, EHSANI N.Evaluation of oxy-acetylene flame angle effect on the erosion resistance of SiC/ZrB2-SiC/ZrB2 multilayer coatings fabricated by the shielding shrouded plasma spray technique[J]. Ceramics International, 2022, 48: 8155-8168.
[6] MALLIK M, Roy S, RAY K K, et al.Effect of SiC content, additives and process parameters on densification and structure-property relations of pressureless sintered ZrB2-SiC composites[J]. Ceramics International, 2013, 39: 2915-2932.
[7] MOHAMMADPOUR B, AHMADI Z, SHOKOUHIMEHR M.Spark plasma sintering of Al-doped ZrB2-SiC composite[J]. Ceramics International, 2019, 45: 4262-4267.
[8] HASSAN R, BALANI K.Oxidation kinetics of ZrB2- and HfB2-powders and their SiC reinforced composites[J]. Corrosion Science, 2020, 177(4): 1-14.
[9] MALLIK M, KAILATH A J, RAY K K, et al.Effect of SiC content on electrical, thermal and ablative properties of pressureless sintered ZrB2-based ultrahigh temperature ceramic composites[J]. Journal of the European Ceramic Society, 2017, 37: 559-572.
[10] KIM K H, SHIM K B.The effect of lanthanum on the fabrication of ZrB2-ZrC composites by spark plasma sintering[J]. Materials Characterization, 2003, 50: 31-37.
[11] ZAPATA-SOLVAS E, JAYASEELAN D D, BROWN P M, et al.Effect of La2O3 addition on long-term oxidation kinetics of ZrB2-SiC and HfB2-SiC ultra-high temperature ceramics[J]. Journal of the European Ceramic Society, 2014, 34: 3535-3548.
[12] LIU H Z, YANG X, FANG C Q, et al.Ablation resistance and mechanism of SiC-LaB6 and SiC-LaB6-ZrB2 ceramics under plasma flame[J]. Ceramics International, 2020, 46: 16249-16256.
[13] JAYASEELAN D D, ZAPATA-SOLVAS E, CHATER R J, et al.Structural and compositional analyses of oxidised layers of ZrB2-based UHTCs[J]. Journal of the European Ceramic Society, 2015, 35: 4059-4071.
[14] KASHYAP S K, MITRA R.Effect of LaB6 additions on densification, microstructure, and creep with oxide scale formation in ZrB2-SiC composites sintered by spark plasma sintering[J]. Journal of the European Ceramic Society, 2019, 39: 2782-2793.
[15] HU P, ZHANG X H. HAN J C, et al.Effect of various additives on the oxidation behavior of ZrB2-based ultra-high-temperature ceramics at 1 800 ℃[J]. Journal of the American Ceramic Society, 2010, 93(2): 345-349.
[16] MONTEVERDE F, ALFANO D, SAVINO R.Effects of LaB6 addition on arc-jet convectively heated SiC-containing ZrB2-based ultra-high temperature ceramics in high enthalpy supersonic airflows[J]. Corrosion Science, 2013, 75: 443-453.
[17] 王新刚, 刘吉轩, 阚艳梅, 等. ZrB2-SiC陶瓷的注浆成型与无压烧结[J]. 无机材料学报, 2009, 24(4): 831-835.
WANG Xingang, LIU Jixuan, KAN Yanmei, et al.Slip casting and pressure less sinter of ZrB2-SiC ceramics[J]. Journal of Inorganic Materials, 2009, 24(4): 831-835.
[18] 吴雯雯, 张国军, 阚艳梅, 等. ZrB2-SiC基超高温陶瓷(UHTCs)的反应烧结及SHS粉体制备[J]. 稀有金属材料与工程, 2007, 36: 20-23.
WU Wenwen, ZHANG Guojun, KAN Yanmei, et al.Reaction sintering of ZrB2/SiC-based ultra-high temperature ceramics (UHTCs) and preparation of SHS powder[J]. Rare Metal Materials and Engineering, 2007, 36: 20-23.
[19] ZHANG S W, KHANGKHAMANO M, ZHANG H J, et al.Novel synthesis of ZrB2 powder via molten-salt-mediated magnesiothermic reduction[J]. Journal of the American Ceramic Society, 2014, 97: 1686-1688.
[20] MOAYYERI H, MEHDINAVAZ A R, GHELICH R, et al.In situ synthesis of ZrB2-ZrC-SiC ultra-high-temperature nanocomposites by a sol-gel process[J]. Advances in Applied Ceramics, 2018, 117: 189-195.
[21] LIU C Q, CHANG X J, WU Y T, et al.In-situ synthesis of ultra-fine ZrB2-ZrC-SiC nanopowders by sol-gel method[J]. Ceramics International, 2020, 46: 7099-7108.
[22] ZHAN Z Q, ZENG H C.A catalyst-free approach for sol-gel synthesis of highly mixed ZrO2-SiO2 oxides[J]. Journal of Non Crystalline Solids, 1999, 243: 26-38.
[23] KONGWUDTHITI S, PRASERTHDAM P, TANAKULRUNGSANK W, et al.The influence of Si-O-Zr bonds on the crystal-growth inhibition of zirconia prepared by the glycothermal method[J]. Journal of Materials Processing Technology, 2003, 136: 186-189.
[24] 林健. 催化剂对正硅酸乙酯水解-聚合机理的影响[J]. 无机材料学报, 1997, 12: 363-369.
LIN Jian.Effect of catalyst on hydrolysis-polymerization mechanism of ethyl orthosilicate[J]. Journal of Inorganic Materials, 1997, 12: 363-369.
[25] 陆佩文. 无机材料科学基础[M]. 武汉: 武汉工业大学出版社, 2005: 94-96.
LU Peiwen.Fundamentals of Inorganic Materials Science [M]. Wuhan: Wuhan University of Technology Press, 2005: 94-96.
[26] LANGFORD J I, WILSON A.Scherrer after sixty years: a survey and some new results in the determination of crystallite size[J]. Journal of Applied Crystallography, 2015, 11: 102-113.
文章导航

/

版权所有 © 《粉末冶金材料科学与工程》编辑部
地址:长沙市麓山南路中南大学粉末冶金研究院 邮编:410083 电话:0731-88877163 邮箱:pmbjb@csu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn