首页   |   期刊介绍   |   编 委 会   |   投稿指南   |   出版法规   |   出版伦理   |   期刊订阅   |   联系我们   |   留言板   |   广告合作   |   ENGLISH
理论研究

过渡金属掺杂TaN硬质涂层的力学性能和电子结构的第一性原理研究

  • 代唯可 ,
  • 汪炯
展开
  • 中南大学 粉末冶金国家重点实验室,长沙 410083

收稿日期: 2023-03-20

  修回日期: 2023-04-23

  网络出版日期: 2023-07-06

基金资助

国家自然科学基金面上项目(52171024); 湖南省自然科学基金资助项目(2022JJ30711)

First-principles study of mechanical properties and electronic structure of transition metal doped TaN hard coating

  • DAI Weike ,
  • WANG Jiong
Expand
  • State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China

Received date: 2023-03-20

  Revised date: 2023-04-23

  Online published: 2023-07-06

摘要

通过第一性原理计算,研究过渡金属(transition metal, TM)元素掺杂氮化钽(Ta7TMN8,TM=Ti、V、Cr、Y、Zr和Hf)的结构稳定性、力学性能和电子结构。根据对结构和稳定性的计算结果可知,所有的掺杂化合物均能量稳定,Ta7TiN8在能量上比其他掺杂化合物更有利;Y、Zr和Hf的掺入使得TaN晶格和体积膨胀,而Ti、V和Cr则相反。通过对力学性能的计算可知,Ti和V的掺入对TaN的剪切模量、弹性模量和理论硬度有较明显的提升,掺Cr对TaN的体积模量有一定的提升,但是会大幅降低理论硬度。基于Ta7TMN8总态密度和分态密度计算结果,费米能级附近存在态密度,表明所有化合物都具有金属性质,由于Ti-3d、V-3d和Cr-3d轨道在费米能级上的贡献比其他TM原子大得多,使得Ta7TiN8、Ta7VN8和Ta7CrN8具有更高的金属性。

本文引用格式

代唯可 , 汪炯 . 过渡金属掺杂TaN硬质涂层的力学性能和电子结构的第一性原理研究[J]. 粉末冶金材料科学与工程, 2023 , 28(3) : 203 -211 . DOI: 10.19976/j.cnki.43-1448/TF.2023018

Abstract

The stability, mechanical properties, and electronic structure of transition metal (TM, TM=Ti, V, Cr, Y, Zr, and Hf) elements doped tantalum nitride (Ta7TMN8) were investigated by first-principles calculations. According to the calculation results of structure and stability, all the doped compounds are stable, and Ta7TiN8 is energetically more favorable than others. The doping of Y, Zr, and Hf can cause lattice and volume expansion of TaN, while Ti, V, and Cr play an opposite role. The calculated mechanical properties reveal that the addition of Ti and V can significantly improve the shear modulus, elastic modulus, and theoretical hardness of TaN, while doping Cr can only increase the volume modulus but significantly decrease the theoretical hardness. Based on the calculation results of the total and partial density of states of Ta7TMN8, the density of states at the Fermi level indicates that all compounds exhibit metallic nature. The contribution of Ti-3d, V-3d, and Cr-3d orbitals at the Fermi level is quite more than other TM atoms, leading to a more metallic character of Ta7TiN8, Ta7VN8, and Ta7CrN8.

参考文献

[1] ARYASOMAYAJULA A, VALLETI K, ARYASOMAYAJULA S, et al.Pulsed DC magnetron sputtered tantalum nitride hard coatings for tribological applications[J]. Surface and Coatings Technology, 2006, 201(7): 4401-4405.
[2] YANG Y H, CHEN D J, WU F B.Microstructure, hardness, and wear resistance of sputtering TaN coating by controlling RF input power[J]. Surface and Coatings Technology, 2016, 303: 32-40.
[3] JI X, ZHOU X Y, TENG J Y, et al.Mechanical and corrosion properties of TaN coatings by N2/Ar flow ratio processes[J]. Surface Engineering, 2013, 29(8): 580-583.
[4] ZAMAN A, MELETIS E I.Microstructure and mechanical properties of TaN thin films prepared by reactive magnetron sputtering[J]. Coatings, 2017, 7(12): 209.
[5] RIEKKINEN T, MOLARIUS J, LAURILA T, et al.Reactive sputter deposition and properties of TaxN thin films[J]. Microelectronic Engineering, 2002, 64(1): 289-297.
[6] MENDIZABAL L, OEDEGAARD A, KONGSTEIN O E, et al.TaNx coatings deposited by HPPMS on SS316L bipolar plates for polymer electrolyte membrane fuel cells: correlation between corrosion current, contact resistance and barrier oxide film formation[J]. International Journal of Hydrogen Energy, 2017, 42(5): 3259-3270.
[7] BEJARANO GAITÁN G, ECHAVARRÍA GARCÍA A M, QUIRAMA OSSA A C, et al. Deposition and property characterisation of TaN coatings deposited with different nitrogen contents[J]. Revista EIA, 2016(25): 69-80.
[8] QI J L, WANG L P, ZHANG Y, et al.Amorphous AlN nanolayer thickness dependent toughness, thermal stability and oxidation resistance in TaN/AlN nanomultilayer films[J]. Surface and Coatings Technology, 2021, 405: 126724.
[9] ABADIAS G, DJEMIA P, BELLIARD L.Alloying effects on the structure and elastic properties of hard coatings based on ternary transition metal (M=Ti, Zr or Ta) nitrides[J]. Surface and Coatings Technology, 2014, 257: 129-137.
[10] XU J H, XUE Y P, CAO J, et al.Effect of V content on microstructure, mechanical properties and friction properties of TaVN composite films[J]. Journal of Inorganic Materials, 2013, 28(7): 769-774.
[11] ČEKADA M, PANJAN P, NAVINŠEK B, et al. Characterization of (Cr,Ta)N hard coatings reactively sputtered at low temperature[J]. Vacuum, 1999, 52(4): 461-467.
[12] GAO J, ZHAO Y, GU Z, et al.Improving electrical conductivity and wear resistance of hafnium nitride films via tantalum incorporation[J]. Ceramics International, 2017, 43(11): 8517-8524.
[13] JU H B, XU J H.Microstructure, oxidation resistance, mechanical and tribological properties of Ti-Y-N films by reactive magnetron sputtering[J]. Surface and Coatings Technology, 2015, 283: 311-317.
[14] KONDATI NATARAJAN S, NIES C L, NOLAN M.The role of Ru passivation and doping on the barrier and seed layer properties of Ru-modified TaN for copper interconnects[J]. The Journal of Chemical Physics, 2020, 152(14): 144701.
[15] OU P F, WANG J, SHANG S L, et al.A first-principles study of structure, elasticity and thermal decomposition of Ti1-xTMxN alloys (TM=Y, Zr, Nb, Hf, and Ta)[J]. Surface and Coatings Technology, 2015, 264: 41-48.
[16] FARHADIZADEH A R, AMADEH A A, GHOMI H.The effect of metal transition dopant on electronic and mechanical properties of titanium nitride: First principle method[J]. Computational Materials Science, 2018, 141: 82-90.
[17] KRESSE G, HAFNER J.Ab initio molecular dynamics for open-shell transition metals[J]. Physical Review B, 1993, 48(17): 13115-13118.
[18] KRESSE G, JOUBERT D.From ultrasoft pseudopotentials to the projector augmented-wave method[J]. Physical Review B, 1999, 59(3): 1758-1775.
[19] PERDEW J P, BURKE K, ERNZERHOF M.Generalized gradient approximation made simple[J]. Physical Review Letters, 1996, 77(18): 3865-3868.
[20] SHANG S L, SAENGDEEJING A, MEI Z G, et al.First-principles calculations of pure elements: equations of state and elastic stiffness constants[J]. Computational Materials Science, 2010, 48(4): 813-826.
[21] ZHU L P, WANG J, DONG C C, et al.Understanding the surface adsorption and oxidation of cubic Cr0.5Al0.5N by first-principles calculations[J]. Computational Materials Science, 2021, 196: 110518.
[22] ZHU L P, WANG J, DONG C C, et al.Stability, elastic and electronic properties of Ta2N by first-principles calculations[J]. Crystals, 2021, 11(4): 445.
[23] WANG F, HOLEC D, ODÉN M, et al. Systematic ab initio investigation of the elastic modulus in quaternary transition metal nitride alloys and their coherent multilayers[J]. Acta Materialia, 2017, 127: 124-132.
[24] BORN M, HUANG K, LAX M.Dynamical theory of crystal lattices[J]. American Journal of Physics, 1955, 23(7): 474-474.
[25] HILL R.The elastic behaviour of a crystalline aggregate[J]. Proceedings of the Physical Society. Section A, 1952, 65(5): 349.
[26] CHEN X Q, NIU H Y, LI D Z, et al.Modeling hardness of polycrystalline materials and bulk metallic glasses[J]. Intermetallics, 2011, 19(9): 1275-1281.
[27] HOLEC D, FRIÁK M, NEUGEBAUER J, et al. Trends in the elastic response of binary early transition metal nitrides[J]. Physical Review B, 2012, 85(6): 064101.
[28] HAO Z P, FU W C, FAN Y H, et al.Theoretical calculation and performance analysis of four-element metal nitride coatings based on first principles[J]. Journal of Materials Engineering and Performance, 2022, 31(10): 8084-8093.
[29] CAO Z N, JIN N, YE J W, et al.A first principles investigation on the solid solution behavior of transition metal elements (W, Mo, Ta, Cr) in Ti(C,N)[J]. International Journal of Refractory Metals and Hard Materials, 2021, 99: 105605.
[30] ANDERSON O L, DEMAREST JR H H. Elastic constants of the central force model for cubic structures: polycrystalline aggregates and instabilities[J]. Journal of Geophysical Research, 1971, 76(5): 1349-1369.
[31] RAVINDRAN P, FAST L, KORZHAVYI P A, et al.Density functional theory for calculation of elastic properties of orthorhombic crystals: application to TiSi2[J]. Journal of Applied Physics, 1998, 84(9): 4891.
[32] YOO M H.On the theory of anomalous yield behavior of Ni3Al-Effect of elastic anisotropy[J]. Scripta Metallurgica, 1986, 20(6): 915-920.
文章导航

/

版权所有 © 《粉末冶金材料科学与工程》编辑部
地址:长沙市麓山南路中南大学粉末冶金研究院 邮编:410083 电话:0731-88877163 邮箱:pmbjb@csu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn