首页   |   期刊介绍   |   编 委 会   |   投稿指南   |   出版法规   |   出版伦理   |   期刊订阅   |   联系我们   |   留言板   |   广告合作   |   ENGLISH
工艺技术

选区激光熔化成形Al-Ce-Sc-Zr合金的工艺优化与组织性能

  • 杨紫微 ,
  • 陈超 ,
  • 吴谊友 ,
  • 周科朝
展开
  • 中南大学 粉末冶金国家重点实验室,长沙 410083

收稿日期: 2023-01-19

  修回日期: 2023-02-22

  网络出版日期: 2023-05-04

基金资助

国家自然科学基金资助项目(52271046); 湖南省自然科学基金资助项目(2022JJ20061)

Process optimization, microstructure and mechanical properties of Al-Ce-Sc-Zr alloy by selective laser melting

  • YANG Ziwei ,
  • CHEN Chao ,
  • WU Yiyou ,
  • ZHOU Kechao
Expand
  • State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China

Received date: 2023-01-19

  Revised date: 2023-02-22

  Online published: 2023-05-04

摘要

以气雾化Al-10Ce-0.4Sc-0.2Zr(质量分数)预合金粉末为原料,采用选区激光熔化(selective laser melting, SLM)法制备Al-Ce-Sc-Zr合金。通过光学显微镜和室温拉伸实验等研究激光功率和扫描速度对合金致密度与力学性能的影响,优化工艺参数;并采用X射线衍射仪、扫描电镜、透射电镜等研究最佳工艺参数下SLM成形的合金共晶组织形貌、物相组成和晶粒尺寸等。结果表明,激光功率和扫描速度跟合金致密度和力学性能之间呈非线性关系;随激光能量密度升高,合金致密度和力学性能先上升后下降。在激光功率为350 W、扫描速度为2 000 mm/s的最优参数下成形的Al-Ce-Sc-Zr合金,致密度达到99.92%,抗拉强度和屈服强度分别为(441±3) MPa和(370±18) MPa,伸长率为(9.4±0.9)%。SLM成形Al-Ce-Sc-Zr合金具有柱状晶和等轴晶交替分布的晶粒组织,晶粒取向较随机,不存在明显的织构。合金由α-Al和Al11Ce3相组成,Sc、Zr原子主要以固溶的形式存在于α-Al中,共晶Al11Ce3相为不规则的条带状,平均宽度为35 nm,排列成不连续的复杂网络,共晶组织十分精细,且分布均匀。

本文引用格式

杨紫微 , 陈超 , 吴谊友 , 周科朝 . 选区激光熔化成形Al-Ce-Sc-Zr合金的工艺优化与组织性能[J]. 粉末冶金材料科学与工程, 2023 , 28(2) : 170 -179 . DOI: 10.19976/j.cnki.43-1448/TF.2023004

Abstract

Al-Ce-Sc-Zr alloy was performed by selective laser melting (SLM) using gas atomization Al-10Ce-0.4Sc-0.2Zr (mass fraction) pre-alloyed powders as raw materials. The effects of laser power and scanning speed on the relative density and mechanical properties of the alloy were studied by optical microscopy and room temperature tensile test to optimize the process parameters. X-ray diffractometer, scanning electron microscope and transmission electron microscope were also used to study the eutectic microstructure morphology, phase composition and grain size of the alloy prepared by SLM under the optimal process parameters. The results show that the relationship between laser power, scanning speed and the relative density, mechanical properties of the alloy are non-linear, with the increase of laser energy density, the relative density and mechanical properties of the alloy show a trend of increasing and then decreasing. The optimum parameters are laser power of 350 W and scanning speed of 2 000 mm/s. The relative density of Al-Ce-Sc-Zr alloy after process optimization can reach 99.92% with tensile strength of (441±3) MPa, yield strength of (370±18) MPa and elongation of (9.4±0.9)%. The as-built Al-Ce-Sc-Zr alloy presents a columnar-equiaxed bimodal grain structure. The grain orientation is relatively random, indicating that no strong texture is formed. The alloy consists of α-Al and Al11Ce3 phases. Sc and Zr atoms are mainly presented as the form of solid solution in α-Al matrix. The eutectic Al11Ce3 phase has an irregular ribbonlike morphology with an average width of 35 nm and is arranged in a complex discontinuous network. The eutectic microstructure is very fine and uniformly distributed.

参考文献

[1] GEORGANTZIA E, GKANTOU M, KAMARIS G S.Aluminium alloys as structural material: a review of research[J]. Engineering Structures, 2021, 227: 111372.
[2] GU D, WANG H, DAI D, et al.Rapid fabrication of Al-based bulk-form nanocomposites with novel reinforcement and enhanced performance by selective laser melting[J]. Scripta Materialia, 2015, 96: 25-28.
[3] JIA Q, ROMETSCH P, CAO S, et al.Towards a high strength aluminium alloy development methodology for selective laser melting[J]. Materials & Design, 2019, 174: 107775.
[4] LIU M, LIU S, CHEN W, et al.Effect of trace lanthanum hexaboride on the phase, grain structure, and texture of electron beam melted Ti-6Al-4V[J]. Additive Manufacturing, 2019, 30: 100873.
[5] LI G, BRODU E, SOETE J, et al.Exploiting the rapid solidification potential of laser powder bed fusion in high strength and crack-free Al-Cu-Mg-Mn-Zr alloys[J]. Additive Manufacturing, 2021, 47: 102210.
[6] MEHTA A, ZHOU L, HUYNH T, et al.Additive manufacturing and mechanical properties of the dense and crack free Zr-modified aluminum alloy 6061 fabricated by the laser-powder bed fusion[J]. Additive Manufacturing, 2021, 41: 101966.
[7] MARTIN J H, YAHATA B D, HUNDLEY J M, et al.3D printing of high-strength aluminium alloys[J]. Nature, 2017, 549(7672): 365-369.
[8] SURYAWANSHI J, PRASHANTH K G, SCUDINO S, et al.Simultaneous enhancements of strength and toughness in an Al-12Si alloy synthesized using selective laser melting[J]. Acta Materialia, 2016, 115(1): 285-294.
[9] THIJS L, KEMPEN K, KRUTH J P, et al.Fine-structured aluminium products with controllable texture by selective laser melting of pre-alloyed AlSi10Mg powder[J]. Acta Materialia, 2013, 61(5): 1809-1819.
[10] SIMS Z C, RIOS O R, WEISS D, et al.High performance aluminum-cerium alloys for high-temperature applications[J]. Materials Horizons, 2017, 4(6): 1070-1078.
[11] LIU Y, MICHI R A, DUNAND D C.Cast near-eutectic Al-12.5%Ce alloy with high coarsening and creep resistance[J]. Materials Science and Engineering A, 2019, 767: 138440.
[12] WEISS D.Improved high-temperature aluminum alloys containing cerium[J]. Journal of Materials Engineering and Performance, 2019, 28(4): 1903-1908.
[13] PLOTKOWSKI A, RIOS O, SRIDHARAN N, et al.Evaluation of an Al-Ce alloy for laser additive manufacturing[J]. Acta Materialia, 2017, 126: 507-519.
[14] WANG L, YE B, BAI Y, et al.Effect of Zr and Sc micro-additions on the microstructure and mechanical properties of as-cast Al-5Ce alloy[J]. Materials Science and Engineering A, 2021, 822: 141654.
[15] YE J, DAI K, WANG Z, et al.Beneficial effects of Sc/Zr addition on hypereutectic Al-Ce alloys: modification of primary phases and precipitation hardening[J]. Materials Science and Engineering A, 2022, 835: 142611.
[16] EKAPUTRA C N, RAKHMONOV J U, WEISS D, et al.Microstructure and mechanical properties of cast Al- Ce-Sc-Zr-(Er) alloys strengthened by Al11Ce3 micro-platelets and L12 Al3(Sc,Zr,Er) nano-precipitates[J]. Acta Materialia, 2022, 240: 118354.
[17] ABOULKHAIR N T, SIMONELLI M, PARRY L, et al.3D printing of aluminium alloys: additive manufacturing of aluminium alloys using selective laser melting[J]. Progress in Materials Science, 2019, 106: 100578.
[18] XIAO R, ZHANG X.Problems and issues in laser beam welding of aluminum-lithium alloys[J]. Journal of Manufacturing Processes, 2014, 16(2): 166-175.
[19] WEINGARTEN C, BUCHBINDER D, PIRCH N, et al.Formation and reduction of hydrogen porosity during selective laser melting of AlSi10Mg[J]. Journal of Materials Processing Technology, 2015, 221(1): 112-120.
[20] ROMANOVA V, BALOKHONOV R, ZINOVIEVA O, et al.Micromechanical simulations of additively manufactured aluminum alloys[J]. Computers & Structures, 2021, 244: 106412.
[21] YANG K V, SHI Y, PALM F, et al.Columnar to equiaxed transition in Al-Mg(-Sc)-Zr alloys produced by selective laser melting[J]. Scripta Materialia, 2018, 145(1): 113-117.
[22] BAHL S, PLOTKOWSKI A, SISCO K, et al.Elevated temperature ductility dip in an additively manufactured Al-Cu-Ce alloy[J]. Acta Materialia, 2021, 220: 117285.
[23] RAKHMONOV J U U, WEISS D, DUNAND D C C. Comparing evolution of precipitates and strength upon aging of cast and laser-remelted Al-8Ce-0.2Sc-0.1Zr[J]. Materials Science and Engineering A, 2022, 840: 142990.
文章导航

/

版权所有 © 《粉末冶金材料科学与工程》编辑部
地址:长沙市麓山南路中南大学粉末冶金研究院 邮编:410083 电话:0731-88877163 邮箱:pmbjb@csu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn