传统方法制备复杂构件的硬质合金产品难度大,成本高,影响了硬质合金的持续发展。采用挤出式3D打印成形硬质合金打印样,经溶剂脱脂、热脱脂和气压烧结制备WC-10Co硬质合金样品,研究打印参数、脱脂工艺和烧结温度对样品的显微组织与力学性能的影响。结果表明,采用不同的喷嘴尺寸,可调节打印样的表面粗糙度与尺寸精度,使用溶剂-热脱脂两步法脱脂后脱脂坯形状与尺寸稳定,烧结后该合金的组织分布均匀,在1 450 ℃烧结后合金硬度为87.3 HRA,抗弯强度超过3 500 MPa,性能媲美常规粉末冶金方法制备的合金。
[1] GARCíA J, CIPRÉS V, BLOMQVIST A, et al. Cemented carbide microstructures: a review[J]. International Journal of Refractory Metals and Hard Materials, 2019, 80: 40-68.
[2] MICHAEL K, WALTER L, IVICA D, et al.Potential of Extrusion Based 3D-printed Hardmetal and Cermet Parts[C]. Beijing, China: World Congress on Powder Metallurgy, 2018.
[3] 张欣悦. 3D冷打印成形硬质合金的研究[D]. 北京: 北京科技大学, 2018.
ZHANG Xinyue.Study on 3D gel printing of cemented carbides[D]. Beijing: University of Science and Technology Beijing, 2018.
[4] YANG Y K, ZHANG C Q, WANG D Y, et al.Additive manufacturing of WC-Co hardmetals: a review[J]. The International Journal of Advanced Manufacturing Technology, 2020, 108(5/6): 1653-1673.
[5] SUWANPREECHA C, MANONUKUL A.A review on material extrusion additive manufacturing of metal and how it compares with metal injection moulding[J]. Metals, 2022, 12(3): 429-484.
[6] RANE K, STRAN M.A comprehensive review of extrusion-based additive manufacturing processes for rapid production of metallic and ceramic parts[J]. Advances in Manufacturing, 2019, 7(2): 155-173.
[7] NURHUUDAN A I, SUPRIADI S, WHULANZA Y, et al.Additive manufacturing of metallic based on extrusion process: a review[J]. Journal of Manufacturing Processes, 2021, 66: 228-237.
[8] ZHANG X Y, GUO Z M, CHEN C G, et al.Additive manufacturing of WC-20Co components by 3D gel-printing[J]. International Journal of Refractory Metals and Hard Materials, 2018, 70: 215-223.
[9] LENGAUER W, DURETEK I, FÜRST M, et al. Fabrication and properties of extrusion-based 3D-printed hardmetal and cermet components[J]. International Journal of Refractory Metals and Hard Materials, 2019, 82: 141-149.
[10] KIM H, KIM J I, KIM Y D, et al.Material extrusion-based three-dimensional printing of WC-Co alloy with a paste prepared by powder coating[J]. Additive Manufacturing, 2022, 52: 1-6.
[11] HU Z P, LIU Y, WU J, et al.The simultaneous improvement of strength and ductility of the 93W-4.6Ni- 2.4Fe prepared by additive manufacturing via optimizing sintering post-treatment[J]. Additive Manufacturing, 2021, 46: 1-9.
[12] HU Z P, LIU Y, QIAN Z, et al.The preparation of high-performance 96W-2.7Ni-1.3Fe alloy parts by powder extrusion 3D printing[J]. Materials Science and Engineering A, 2021, 817: 1-8.
[13] 刘晏军, 刘业, 谭彦妮. 间接3D打印制备Ti/HAp复合材料的结构与性能[J]. 粉末冶金材料科学与工程, 2021, 26(6): 515-524.
LIU Yanjun, LIU Ye, TAN Yanni.Structure and properties of Ti/HAp composites prepared by indirect 3D printing[J]. Materials Science and Engineering of Powder Metallurgy, 2021, 26(6): 515-524.
[14] SINGH G, MISSIAEN J M, BOUVARD D, et al.Additive manufacturing of 17-4pH steel using metal injection molding feedstock: analysis of 3D extrusion printing, debinding and sintering[J]. Additive Manufacturing, 2021, 47: 1-12.
[15] SINGH G, MISSIAEN J M, BOUVARD D, et al.Copper extrusion 3D printing using metal injection moulding feedstock: Analysis of process parameters for green density and surface roughness optimization[J]. Additive Manufacturing, 2021, 38: 1-15.
[16] 陆腾轩, 孟晓燕, 李狮弟, 等. 硬质合金粉末挤出打印中增材制造工艺及其显微结构[J]. 材料工程, 2022, 50(5): 147-155.
LU Tengxuan, MENG Xiaoyan, LI Shidi, et al.Additive manufacturing process and microstructure during powder extrusion printing of cemented carbides[J]. Journal of Materials Engineering, 2022, 50(5) : 147-155.
[17] 魏崇斌, 宋晓艳, 付军, 等. 烧结方法对WC-Co硬质合金性能的影响[J]. 粉末冶金材料科学与工程, 2012, 17(3): 315-320.
WEI Chongbin, SONG Xiaoyan, FU Jun, et al.Effect of sintering technologies on properties of WC-Co cemented carbides[J]. Materials Science and Engineering of Powder Metallurgy, 2012, 17(3): 315-320.
[18] GONZALEZ-GUTIIERREZ J, CANO S, SCHUSCHNIGG S, et al.Additive manufacturing of metallic and ceramic components by the material extrusion of highly-filled polymers: a review and future perspectives[J]. Materials, 2018, 11(5): 840-875.
[19] MACKAY M E.The importance of rheological behavior in the additive manufacturing technique material extrusion[J]. Journal of Rheology, 2018, 62(6): 1549-1561.
[20] RANE K, BARRIERE T, STRANO M.Role of elongational viscosity of feedstock in extrusion-based additive manufacturing of powder-binder mixtures[J]. The International Journal of Advanced Manufacturing Technology, 2020, 107(11/12): 4389-4402.
[21] 尚峰, 付杰. WC-10Co超细晶硬质合金的注射成形工艺研究[J]. 稀有金属和硬质合金, 2017, 45(4): 63-69.
SHANG Feng, FU Jie.Study on injection molding process of WC-10Co ultrafine grained cemented carbide[J]. Rare Metals and Cemented Carbides, 2017, 45(4) :63-69.
[22] 李志希. 硬质合金注射成形工艺的研究[D]. 长沙: 中南大学, 2005.
LI Zhixi.Research on cemented carbide injection molding process[D]. Changsha: Central South University, 2005.
[23] MONENI V, ASKARI A, ALLAEI M H, et al.Investigating the effect of stearic acid on the mechanical, rheological, and microstructural properties of AISI 4605 feedstock for metal injection molding process[J]. Transactions of the Indian Institute of Metals, 2021, 74(9): 2161-2170.
[24] 李松林, 黄伯云, 曲选辉, 等. 表面活性剂对金属粉末注射成形喂料性能的影响[J]. 稀有金属材料与工程, 2001, 30(2): 131-134.
LI Songlin, HUANG Baiyun, QU Xuanhui, et al.Influence of surfactants on properties of metal injection molding (MIM) feedstock[J]. Rare Metal Materials and Engineering, 2001, 30(2) : 131-134.
[25] CAI H, JING W E, GUO S D, et al.Effects of micro/nano CeO2 on the microstructure and properties of WC-10Co cemented carbides[J]. International Journal of Refractory Metals and Hard Materials, 2021, 95: 1-11.
[26] 周书助. 硬质合金生产原理和质量控制[M]. 北京: 冶金工业出版社, 2014.
ZHOU Shuzhu.Cemented Carbide Production Principle and Quality Control[M]. Beijing: Metallurgical Industry Press, 2014.