首页   |   期刊介绍   |   编 委 会   |   投稿指南   |   出版法规   |   出版伦理   |   期刊订阅   |   联系我们   |   留言板   |   广告合作   |   ENGLISH
工艺技术

磁响应光子晶体四氧化三铁的制备及磁致变色

  • 田兆霞 ,
  • 吴志生 ,
  • 肖威 ,
  • 许高杰 ,
  • 刘丰华
展开
  • 1.太原科技大学 材料科学与工程学院,太原 030024;
    2.中国科学院 宁波材料技术与工程研究所,浙江省增材制造材料重点实验室,宁波 315201

收稿日期: 2023-01-01

  修回日期: 2023-02-10

  网络出版日期: 2023-05-04

基金资助

江苏省产业前瞻与关键核心技术项目(BE2019072); 甘肃省技术创新引导计划区域科技合作专项(20JR10QA579)

Preparation and magnetochromic discoloration of ferroferric oxide magnetically responsive photonic crystals

  • TIAN Zhaoxia ,
  • WU Zhisheng ,
  • XIAO Wei ,
  • XU Gaojie ,
  • LIU Fenghua
Expand
  • 1. School of Materials Science and Engineering, Taiyuan University of Science and Technology, Taiyuan 030024, China;
    2. Zhejiang Key Laboratory of Additive Manufacturing Materials, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo 315201, China

Received date: 2023-01-01

  Revised date: 2023-02-10

  Online published: 2023-05-04

摘要

用三氯化铁(FeCl3)提供铁源,分别以2种不同化学结构的聚(4-苯乙烯磺酸-共聚-马来酸)(poly styrene sulfonic acid-co-maleic acid PSSMA)钠盐作为表面活性剂,采用溶剂热法制备磁响应四氧化三铁(Fe3O4)纳米颗粒。研究不同结构的PSSMA表面活性剂和反应条件对Fe3O4纳米颗粒形貌、粒径与光学性能的影响。结果表明,在强碱环境下,以n(SS)∶n(MA)=1∶1的PSSMA作表面活性剂制备的Fe3O4粒子表面粗糙,为近球形,粒径随水量增加而增大;在弱碱条件下,以n(SS)∶n(MA)=3∶1的PSSMA为表面活性剂制备的Fe3O4粒子表面光滑,为规则球形,粒径随Fe3+含量增加而增大。在弱碱环境下,由于PSSMA(3∶1)表面含有更丰富的磺酸基,更适合生成粒径均一、单分散性好且具有优异超顺磁性的Fe3O4纳米颗粒。该Fe3O4纳米颗粒分散体系在外磁场作用下可快速形成有序光子晶体纳米颗粒群,获得优异的可调结构色。

本文引用格式

田兆霞 , 吴志生 , 肖威 , 许高杰 , 刘丰华 . 磁响应光子晶体四氧化三铁的制备及磁致变色[J]. 粉末冶金材料科学与工程, 2023 , 28(2) : 129 -140 . DOI: 10.19976/j.cnki.43-1448/TF.2023001

Abstract

Magnetically responsive ferroferric oxide (Fe3O4) nanoparticles were prepared by solvothermal method using ferric trichoride (FeCl3) as the iron source and poly (styrene sulfonic acid-co-maleic acid) (PSSMA) sodium salt with two different chemical structures as surfactants. The effects of PSSMA surfactants with different structures and reaction conditions on the morphology, particle size, and photonic properties of Fe3O4 nanoparticles were investigated. The results show that the Fe3O4 particles are nearly spherical and surface is rough when using PSSMA with n(SS)∶n(MA)=1∶1 as surfactant in strong alkali environment, and particle size increases with increasing water content. Using PSSMA with n(SS)∶n(MA)=3∶1 as surfactant in weak alkali environment, the particles are regular spherical and surface is smooth, and the size increases with increasing Fe3+ content. It is more suitable for the generation of superparamagnetic Fe3O4 nanoparticles with uniform particle size and good monodispersity in weak alkaline environment due to the more abundant sulfonic acid group on the surface. This Fe3O4 nanoparticle dispersion system can rapidly form ordered photonic crystal nanoparticles under the action of external magnetic field, and obtain excellent tunable structure color.

参考文献

[1] JOHN S.Strong localization of photons in certain disordered dielectric superlattices[J]. Physical Review Letters, 1987, 58(23): 2486-2489.
[2] YABLONOVITCH E.Inhibited spontaneous emission in solid-state physics and electronics[J]. Physical Review Letters, 1987, 58(20): 2059-2062.
[3] SHI P, MIWA E, HE J L, et al.Bioinspired color elastomers combining structural, dye, and background colors[J]. ACS Applied Materials and Interfaces, 2021, 13(46): 55591-55599.
[4] XU J H, SHANG M, LIU J, et al.Simultaneous self- assembly of molecularly imprinted magnetic nanoparticles to construct a magnetically responsive photonic crystals sensor for bisphenol A[J]. Sensors and Actuators B: Chemical, 2021, 338: 129858.
[5] KIM H, CHOI J, KIM K K, et al.Biomimetic chameleon soft robot with artificial crypsis and disruptive coloration skin[J]. Nature Communications, 2021, 12(1): 4658.
[6] PATEL B B, WALSH D J, KIM D H, et al.Tunable structural color of bottlebrush block copolymers through direct-write 3D printing from solution[J]. Science Advances, 2020, 6(24): DOI:10.1126/sciadv.aaz7202.
[7] QIN L, LIU X J, HE K Y, et al.Geminate labels programmed by two-tone microdroplets combining structural and fluorescent color[J]. Nature Communications, 2021, 12(1): 699.
[8] LI G, LUO W, CHE Z Y, et al.Lipophilic magnetic photonic nanochains for practical anticounterfeiting[J]. Small, 2022, 18(21): 2200662.
[9] LIU Y, FAN Q S, ZHU G H, et al.A dual responsive photonic liquid for independent modulation of color brightness and hue[J]. Materials Horizons, 2021, 8(7): 2032-2040.
[10] WANG Y, SHANG L R, CHEN G P, et al.Bioinspired structural color patch with anisotropic surface adhesion[J]. Science Advances, 2020, 6(4): DOI:10.1126/sciadv.aax8258.
[11] XIAO F B, SUN Y F, DU W F, et al.Smart photonic crystal hydrogel material for uranyl ion monitoring and removal in water[J]. Advanced Functional Materials, 2017, 27(42): 1702147.
[12] BAI L, XIE Z Y, WANG W, et al.Bio-inspired vapor- responsive colloidal photonic crystal patterns by inkjet printing[J]. ACS Nano, 2014, 8(11): 11094-11100.
[13] CHOI T M, JE K, PARK J-G, et al.Photonic capsule sensors with built-in colloidal crystallites[J]. Advanced Materials, 2018, 30(43): 1803387.
[14] CHEN K, FU Q, YE S, et al.Multicolor printing using electric-field-responsive and photocurable photonic crystals[J]. Advanced Functional Materials, 2017, 27(43): 1702825.
[15] GE J P, HU Y X, ZHANG T R, et al.Self-Assembly and field-responsive optical diffractions of superparamagnetic colloids[J]. Langmuir, 2008, 24(7): 3671-3680.
[16] DONG Y X, WEN B, CHEN Y J, et al.Autoclave-free facile approach to the synthesis of highly tunable nanocrystal clusters for magnetic responsive photonic crystals[J]. RSC Advances, 2016, 6(69): 64434-64440.
[17] GE J P, YIN Y D.Responsive photonic crystals[J]. Angewandte Chemie International Edition, 2011, 50(7): 1492-1522.
[18] HE L, WANG M S, GE J P, et al.Magnetic assembly route to colloidal responsive photonic nanostructures[J]. Accounts of Chemical Research, 2012, 45(9): 1431-1440.
[19] XU J S, SHANG M, NI X J, et al.Strategy based on rapid self-assembly of magnetic nanoparticles for construction of photonic crystals[J]. ACS Applied Nano Materials, 2020, 3(8): 8052-8059.
[20] GE J P, HU Y X, BIASINI M, et al.Superparamagnetic magnetite colloidal nanocrystal clusters[J]. Angewandte Chemie International Edition, 2007, 46(23): 4342-4345.
[21] WANG H, SUN Y B, CHEN Q W, et al.Synthesis of carbon- encapsulated superparamagnetic colloidal nanoparticles with magnetic-responsive photonic crystal property[J]. Dalton Transactions, 2010, 39(40): 9565-9569.
[22] SUN J, LI L J, YU R, et al.Synthesis and microwave absorption properties of sulfur-free expanded graphite/Fe3O4 composites[J]. Molecules, 2020, 25(13): 3044.
[23] ASAB G, ZEREFFA E A, ABDO SEGHNE T.Synthesis of silica-coated Fe3O4 nanoparticles by microemulsion method: characterization and evaluation of antimicrobial activity[J]. International Journal of Biomaterials, 2020, 2020: 4783612.
[24] FANG Y Q, FEI W W, SHEN X Q, et al.Magneto-sensitive photonic crystal ink for quick printing of smart devices with structural colors[J]. Materials Horizons, 2021, 8(7): 2079-2087.
[25] TJIPTO E, QUINN J F, CARUSO F.Assembly of multilayer films from polyelectrolytes containing weak and strong acid moieties[J]. Langmuir, 2005, 21(19): 8785-8792.
[26] YANG P, LI H, ZHANG S, et al.Gram-scale synthesis of superparamagnetic Fe3O4 nanocrystal clusters with long-term charge stability for highly stable magnetically responsive photonic crystals[J]. Nanoscale, 2016, 8(45): 19036-19042.
[27] GAO J N, RAN X Z, SHI C M, et al.One-step solvothermal synthesis of highly water-soluble, negatively charged superparamagnetic Fe3O4 colloidal nanocrystal clusters[J]. Nanoscale, 2013, 5(15): 7026-7033.
[28] CHENG C M, WEN Y H, XU X F, et al.Tunable synthesis of carboxyl-functionalized magnetite nanocrystal clusters with uniform size[J]. Journal of Materials Chemistry, 2009, 19(46): 8782-8788.
[29] 陈哲敏, 胡朋兵, 孟庆强. 动态光散射及电子显微镜纳米颗粒测量方法的比较研究[J]. 光散射学报, 2015, 27(1): 54-58.
CHEN Zhemin, HU Pengbing, MENG Qingqiang.Comparsion study on DLS and SEM methods of measuring nanoparticle size[J]. The Journal of Light Scattering, 2015, 27(1): 54-58.
[30] TANG S G, WANG C Q, LIU N, et al.Instantaneous magnetically assembled and hydrophilic photonic crystals with controlled diffraction colors[J]. The Journal of Physical Chemistry C, 2018, 122(31): 18021-18028.
[31] LIU J, SUN Z K, DENG Y H, et al.Highly water-dispersible biocompatible magnetite particles with Low Cytotoxicity stabilized by citrate groups[J]. Angewandte Chemie International Edition, 2009, 48(32): 5875-5879.
[32] LIU N, DENG L G, WANG P X, et al.Progress on rapidly and self-assembly magnetically responsive photonic crystals with high tunability and stability[J]. Frontiers in Materials, 2022, 9: 843097.
[33] VALKAMA S, KOSONEN H, RUOKOLAINEN J, et al.Self-assembled polymeric solid films with temperature- induced large and reversible photonic-bandgap switching[J]. Nature Materials, 2004, 3(12): 872-876.
[34] BAUMGARTNER J, DEY A, BOMANS P H H, et al. Nucleation and growth of magnetite from solution[J]. Nature Materials, 2013, 12(4): 310-314.
[35] BOYLE B M, FRENCH T A, PEARSON R M, et al.Structural color for additive manufacturing: 3D-printed photonic crystals from block copolymers[J]. ACS Nano, 2017, 11(3): 3052-3058.
文章导航

/

版权所有 © 《粉末冶金材料科学与工程》编辑部
地址:长沙市麓山南路中南大学粉末冶金研究院 邮编:410083 电话:0731-88877163 邮箱:pmbjb@csu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn