首页   |   期刊介绍   |   编 委 会   |   投稿指南   |   出版法规   |   出版伦理   |   期刊订阅   |   联系我们   |   留言板   |   广告合作   |   ENGLISH
工艺技术

喷雾干燥法制备Cu-Al2O3复合粉末及其复合材料的组织与性能

  • 吴浩 ,
  • 甘雪萍
展开
  • 中南大学 粉末冶金国家重点实验室,长沙 410083

收稿日期: 2023-01-10

  修回日期: 2023-02-20

  网络出版日期: 2023-03-23

基金资助

国家自然科学基金资助项目(52071342)

Fabrication of Cu-Al2O3 composite powder by spray drying and its microstructure, properties

  • WU Hao ,
  • GAN Xueping
Expand
  • State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China

Received date: 2023-01-10

  Revised date: 2023-02-20

  Online published: 2023-03-23

摘要

用Cu(NO3)2∙3H2O和Al(NO3)3∙9H2O为原料,通过喷雾干燥、焙烧、还原、球磨等制备Cu-Al2O3复合粉末,然后热压烧结制备块体Cu-Al2O3复合材料,最后通过热锻造实现进一步致密化。利用X射线衍射仪、扫描电镜和透射电镜等研究Cu-Al2O3复合粉末和块体复合材料的显微组织与形貌,并测试复合材料的抗拉强度和电导率。结果表明,Cu-Al2O3复合粉末呈片状,Al2O3分布均匀。烧结态复合材料的致密度较低,为95.4%,抗拉强度和导电率仅为306 MPa和89.4%IACS。热锻处理后致密度提高至99.9%,抗拉强度和电导率分别提升至422 MPa和94.8%IACS;Al2O3颗粒以γ-Al2O3形态均匀分布于基体,晶界处颗粒较大(50~100 nm),晶内颗粒较小(10~20 nm)。

本文引用格式

吴浩 , 甘雪萍 . 喷雾干燥法制备Cu-Al2O3复合粉末及其复合材料的组织与性能[J]. 粉末冶金材料科学与工程, 2023 , 28(1) : 74 -82 . DOI: 10.19976/j.cnki.43-1448/TF.2023003

Abstract

Aluminum nitrate and copper nitrate were used to prepare Cu-Al2O3 composite powders by spray drying, roasting, reduction and ball milling. Cu-Al2O3 composites were prepared by hot pressing sintering, eventually the further densification of the materials were achieved by hot forging. The microstructure and morphology of the Cu-Al2O3 composite powders and bulk materials were studied by X-ray diffraction scanning electron microscopy and transmission electron microscopy, the tensile strength and conductivity of the composite materials were also tested. The results indicate that the Cu-Al2O3 composite powders are flake and the distribution of Al2O3 is uniform. The sintered composites have a low density of 95.4%, the tensile strength and conductivity are only 306 MPa and 89.4%IACS. After hot forging, the density increases to 99.9%, the tensile strength and conductivity increase to 422 MPa and 94.8%IACS. γ-Al2O3 particles are uniformly distributed in the copper matrix: large-sized particles (50?100 nm) exist at grain boundaries and small-sized particles (10?20 nm) precipitates within grain boundaries.

参考文献

[1] ZINKLE S J.Applicability of copper alloys for DEMO high heat flux components[J]. Physica Scripta, 2016, T167: 014004.
[2] 李斌, 刘贵民, 丁华东, 等. 弥散强化铜合金的研究现状[J]. 材料导报, 2012, 26(17): 107-111.
LI Bin, LIU Guimin, DING Huadong, et al.Research status of dispersion strengthening copper alloys[J]. Material Reports, 2012, 26(17): 107-111.
[3] ZHANG X, LIN C, CUI S, et al.Characteristics of nano-alumina particles dispersion strengthened copper fabricated by reaction synthesis[J]. Rare Metal Materials and Engineering, 2016, 45(4): 892-895.
[4] ZHAO S, ZHANG T, WANG M.Factors affecting the coarsening and agglomeration of alumina particles in Cu-Al2O3 composites prepared with internal oxidation[J]. Advanced Engineering Materials, 2022, 24(5): 2101169.
[5] 张文毓. 氧化铝弥散强化铜应用进展[J]. 世界有色金属, 2008(7): 60-61.
ZHANG Wenyu.Application progress of alumina dispersion strengthening copper[J]. World Non-ferrous Metals, 2008(7): 60-61.
[6] MA X, NICKERSON E, WANG T, et al.Friction extrusion of ODS copper rod made from powder[J]. Journal of Manufacturing Processes, 2022, 84: 223-229.
[7] 王鹏云, 冯岩, 陈会东, 等. Al2O3弥散强化铜棒材高温力学性能与软化行为研究[J]. 材料开发与应用, 2017, 32(3): 46-53.
WANG Pengyun, FENG Yan, CHEN Huidong, et al.Study on high temperature mechanical properties and softening behavior of Al2O3 dispersion strengthened copper bar[J]. Material Development and Application, 2017, 32(3): 46-53.
[8] XIANG Z Q, LI Z, LEI Q, et al.High temperature mechanical behavior of alumina dispersion strengthened copper alloy with high content of alumina[J]. Transactions of Nonferrous Metals Society of China, 2015, 25(2): 444-450.
[9] DURISINOVA K, DURISIN J, DURISIN M.Microstructure and properties of nanocrystalline copper strengthened by a low amount of Al2O3 nanoparticles[J]. Journal of Materials Engineering and Performance, 2017, 26(3): 1057-1061.
[10] LI L, LI Z, LEI Q, et al.Microstructure evolution of alumina dispersion strengthened copper alloy deformed under different conditions[J]. Transactions of Nonferrous Metals Society of China, 2015, 25(12): 3953-3958.
[11] CHEN W, GAO G, MENG X, et al.Microstructure, properties and strengthening mechanism of Cu-TiB2-Al2O3 composite prepared by liquid phase in-situ reaction casting[J]. Journal of Alloys and Compounds, 2022, 912: 165170.
[12] ZHANG G H, JIANG X S, SHAO Z Y, et al.Microstructures and mechanical properties of alumina whisker reinforced copper matrix composites prepared by hot-pressing and hot isostatic pressing[J]. Materials Research Express, 2019, 6(11): 116513.
[13] 王硕. 内氧化法制备弥散强化铜的工艺研究[D]. 南昌: 南昌大学, 2013.
WANG S.Research on the process of preparing dispersion- strengthened copper by internal oxidation[D]. Nanchang; Nanchang University, 2013.
[14] YAN Z Q, CHEN F, YE F X, et al.Microstructures and properties of Al2O3 dispersion-strengthened copper alloys prepared through different methods[J]. International Journal of Minerals Metallurgy and Materials, 2016, 23(12): 1437-1443.
[15] QIN Y Q, TIAN Y, PENG Y Q, et al.Research status and development trend of preparation technology of ceramic particle dispersion strengthened copper-matrix composites[J]. Journal of Alloys and Compounds, 2020, 848:156475.
[16] POBEL C R, LODES M A, KOERNER C.Selective electron beam melting of oxide dispersion strengthened copper[J]. Advanced Engineering Materials, 2018, 20(8): 1800068.
[17] FU Y, PAN Q, CAO Z, et al.Strength and electrical conductivity behavior of nanoparticles reaction on new alumina dispersion-strengthened copper alloy[J]. Journal of Alloys and Compounds, 2019, 798: 616-621.
[18] ZHUO H, TANG J, YE N.Strengthening mechanisms of Y2O3 dispersion strengthened copper-based composites[J]. Rare Metal Materials and Engineering, 2015, 44(5): 1134-1138.
[19] WANG X, WANG Y, SU Y, et al.Synergetic strengthening effects on copper matrix induced by Al2O3 particle revealed from micro-scale mechanical deformation and microstructure evolutions[J]. Ceramics International, 2019, 45(12): 14889-14895.
[20] MIRELLA M, LÁSZLÓ T, JUDIT T, et al. Nanostructured micronized solid dispersion of crystalline-amorphous metronidazole embedded in amorphous polymer matrix prepared by nano spray drying[J]. Advanced Powder Technology, 2021, 32(7): 2621-2633.
文章导航

/

版权所有 © 《粉末冶金材料科学与工程》编辑部
地址:长沙市麓山南路中南大学粉末冶金研究院 邮编:410083 电话:0731-88877163 邮箱:pmbjb@csu.edu.cn
本系统由北京玛格泰克科技发展有限公司设计开发 技术支持:support@magtech.com.cn